АННОТАЦИЯ										
Настоящая часть руководства оператора содержит сведения об организации работы в ПП «СКАДА А-СОФТ» с модулем EN, предназначенным для организации связи с контроллерами ТПТС.										

СОДЕРЖАНИЕ

1 Оп	исание протокола EN
1.1	Состав и структура ТПТС-НТ
1.2	Интерфейс обмена данными ТПТС-НТ с ВУ
1.3	Протокол сетевого обмена ТПТС с ВУ
2 Pea	ализация протокола EN в ПП «СКАДА А-СОФТ»
2.1	Общее описание
2.2	Логические контроллеры
3 Би	блиотеки шаблонов подсистемы «Сбор данных»18
3.1	Библиотека шаблонов операторов SYSTEM_NT
3.2	Библиотека шаблонов параметров GateNTMain
3.3	Библиотека шаблонов параметров NT_tmp
3.4	Библиотека шаблонов проекта TPTS_KKS24
4 Фо	рмирование базы данных для обмена по протоколу EN26
4.1	Порядок действий при формировании базы данных модуля EN26
4.2	Формирование файлов INFO.db, Protocol.db, ProjectBase.db из GET-проекта26
4.3	Загрузка данных в ПП «СКАДА А-СОФТ»31
5 Ko	нфигурирование интерфейсов и контроллеров
5.1	Общее описание
5.2	Конфигуратор интерфейса 34
5.3	Конфигуратор контроллеров
5.4	Параметры контроллеров40
6 Эле	ементы графического интерфейса пользователя при работе с протоколом EN43
6.1	Графический интерфейс пользователя
6.2	Окно управления аналоговым параметром44
6.3	Окно управления задвижкой45
6.4	Окно управления клапаном отсечным47
6.5	Окно управления клапаном регулирующим

6.6	Окно управления вентилятором	51
6.7	Окно управления вентилятором с регулированием	53
6.8	Окно управления насосом	55
6.9	Окно управления насосом с регулированием	56
6.10	Добавление динамического объекта на видеограмму	57
Доб	бавление нового канальногооператора	59
7.1	Исходные данные для добавления нового канального оператора	59
7.2	Порядок действий при добавлении нового канального оператора	62
Биб	блиотека элементов для АСУ ТП АЭС	66
8.1	Изображение аналоговых технологических параметров	66
8.2	Изображение насосов	69
8.3	Пиктограмма вентагрегата	74
8.4	Изображение положения запорной арматуры	79
8.5	Изображение регулирующего клапана	85
8.6	Изображение блока задания уставки	92
8.7	Изображение блока выбора режима	96
8.8	Изображение блока переключения режима	101
8.9	Изображение ламп одиночной и групповой сигнализации	104
8.9 8.10	Изображение ламп одиночной и групповой сигнализации	
8.10		107
	Интерфейсный блок функционально-группового управления (ФГУ)	107

1 Описание протокола EN

Протокол EN является специфичным протоколом для контроллеров ТПТС.

Программно-технические средства на базе ТПТС являются неотъемлемой частью АСУ ТП ряда тепловых и атомных электростанций, а также объектов в нефтяной отрасли.

1.1 Состав и структура ТПТС-НТ

Комплекс унифицированных программно-технических средств ТПТС создан на основе системы TELEPERM МЕ разработки АО "Сименс" (Германия), технология производства которой была передана в рамках лицензионного договора.

Конструктивно аппаратура ТПТС-НТ реализуется в виде приборной стойки (ПС), основными элементами которой являются крейт станции ввода-вывода (СВВ) и крейт процессора автоматизации (ПА).

Крейт СВВ предназначен для размещения до 16 модулей связи с процессом (СП) и до двух интерфейсных модулей (ИМ).

Крейт ПА предназначен для размещения модулей процессора автоматизации.

В ПС устанавливаются коммутаторы шины ENL и шины EN. Коммутаторы шины ENL предназначены для подключения ИМ (установленных в крейтах CBB) и модулей EMS (установленных в крейтах ПА) к шине ENL.

Коммутаторы шины EN предназначены для подключения модулей EMS, а также внешних устройств, не входящих в состав ПС, к шине EN.

Функции ПА в комплексе средств автоматизации (КСА) ТПТС-НТ:

- выполнение заданного пользователем алгоритма задачи АСУ ТП;
- выполнение, заданного пользователем алгоритма обмена данными по шине EN между процессорами автоматизации, подключенными к шине EN, диагностической станцией и рабочими станциями, подключенными через шлюз сопряжения КСА с системой контроля и управления (СКУ);
- управление обменом данными по шине ENL, к которой подключаются CBB, с модулями преобразователей аналоговых сигналов датчиков и исполнительных механизмов, непосредственно связанных с технологическим процессом;

- получение и обработка команд управления ПА, СВВ и исполнительными
 механизмами от СКУ по шине EN, в соответствии с алгоритмом;
- получение данных от датчиков через CBB по шине ENL;
- передача информации по шине EN о состоянии объекта управления для СКУ;
- передача команд управления по шине ENL в CBB для выдачи управляющих воздействий на исполнительные механизмы;
- обмен данными с другими ПА и иными устройствами, входящими в состав КСА по шине EN.

Функции ИМ:

- приема данных от ПА по шине ENL и передача их в модули СП по ШВВ;
- приема данных от СП-модулей по ШВВ и передача их в ПА по шине ENL;
- поддержки счетчика текущего времени и его синхронизации от ПА;
- синхронизации счетчиков текущего времени в модулях СП;
- оперативного программного самоконтроля и диагностики;
- выполнения операций конфигурирования, программирования, диагностики ИМ под управлением рабочей станции по интерфейсу USB;
- обмена событийной информацией между двумя СП-модулями, расположенными
 в разных станциях ввода/вывода, подключенными к одному ПА;
- управления горячим резервированием ИМ и СП-модулей;
- поддержки программирования, тестирования и отладки ИМ с помощью внешних аппаратно-программных средств по интерфейсам JTAG и BDM.

СП-модули предназначены для приема и предварительной обработки сигналов от датчиков, выдачи сигналов на исполнительные механизмы, индивидуального управления исполнительными механизмами.

Функциональная структура ТПТС-НТ представлена на рисунке 1.

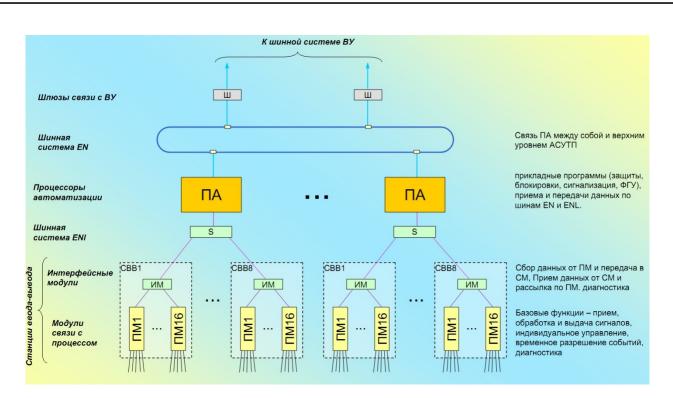


Рисунок 1

1.2 Интерфейс обмена данными ТПТС-НТ с ВУ

Сетевое взаимодействие с ВУ осуществляется через интерфейс RJ-45 по протоколу EN-шины, основанному на протоколе LLC (стандарт IEEE 802.2).

Связь ПТК с ВУ по системной шине EN выполняется через коммуникационный модуль, входящий в состав ПА.

Коммуникационный модуль выполняет функции обмена аналоговыми и двоичными сигналами, используя механизмы циклической, событийной и циклособытийной передачи, а также механизмы передачи данных по запросу.

Обмен данными выполняется с использованием программных блоков - операторов связи. Для связи с ВУ в процессоре автоматизации могут устанавливаться следующие виды операторов:

- AKS оператор для передачи по инициативе ПА до 28 аналоговых сигналов с дискретностью присвоения метки времени 1 с;
- ATS оператор для циклической передачи по инициативе ПА до 28 аналоговых параметров с дискретностью присвоения метки времени 100 мс;
- MKS оператор для передачи по инициативе ПА до 32 бинарных сигналов с дискретностью присвоения метки времени 10 мс;

- головные операторы программные блоки, формирующие сообщения о неисправностях, обнаруженных диагностикой модуля;
- канальные операторы программные блоки, формирующие сообщения о состоянии и неисправностях связанных с ними объектах управления.

Головные и канальные операторы поддерживают дисциплину передачи данных по запросу с ВУ. Канальные операторы, а также головной оператор DM, поддерживают дисциплину приема данных по телеграммам записи, передаваемым ВУ.

Для регистрации последовательности событий (входных дискретных сигналов) предусмотрен оператор BSTA-для инициативной передачи данных о времени изменения дискретного входа. Этот оператор формирует сообщение с меткой времени, имеющей дискретность 1 мс.

1.3 Протокол сетевого обмена ТПТС с ВУ

Обмен данными между ПТК и ВУ осуществляется телеграммами, типы которых приводятся в 1.3.1 - 1.3.8

1.3.1 *AKS* – телеграмма

АКЅ-телеграмма формируется коммуникационным модулем. В АКЅ-телеграмме можно передать до 28 значений аналоговых параметров другим абонентам системной шины как циклически, так и при их изменении (событийно). Событийная передача включается индивидуально для каждой телеграммы АКЅ проектным путём.

Для того, чтобы коммуникационный модуль начал передавать AKS-телеграмму, на неё должен быть выдан запрос от абонента системной шины:

- через оператор АКЕ (в случае связи с другим процессором автоматизации) в
 прикладной структуре другого коммуникационного модуля;
- через механизм инициализации приема AKS-телеграмм (в случае связи со шлюзом сопряжения): регистрация нового получателя путём посылки телеграммы AKE и ожидания подтверждения регистрации в виде ответной телеграммы RAKE.

Каждому значению аналогового сигнала соответствует бит его недостоверности.

Передаваемые аналоговые значения имеют мантиссу в 15 бит и порядок в 8 бит.

Телеграмма AKS имеет метку времени с дискретностью 1 секунда, метка времени не содержит "часов".

1.3.2 *MKS* – телеграмма

МКS-телеграмма формируется коммуникационным модулем. В МКS-телеграмме можно передать 32 значения двоичных сигналов другим абонентам системной шины как циклически, так и при их изменении (событийно). Событийная передача включается индивидуально для каждой телеграммы МКS проектным путём.

Для того, чтобы коммуникационный модуль начал передавать MKS-телеграмму, на неё должен быть выдан запрос от абонента системной шины:

- через оператор МКЕ (в случае связи с другим процессором автоматизации) в
 прикладной структуре другого коммуникационного модуля;
- через механизм инициализации приема MKS-телеграмм (в случае связи со шлюзом сопряжения): регистрация нового получателя путём посылки телеграммы MKE и ожидания подтверждения регистрации в виде ответной телеграммы RMKE.

Телеграмма MKS имеет метку времени с дискретностью 10 мс.

1.3.3 *BST* – телеграмма

ВЅТ-телеграммы формируются коммуникационным модулем для головных и канальных операторов связи. ВЅТ-телеграммы передаются на СВБУ только событийно, при изменении значения контролируемого сигнала в 0 или 1 (для всех типов). Для получения таких телеграмм необходимо предварительно зарегистрировать нового получателя ВЅТ путём посылки соответствующему коммуникационному модулю телеграммы AВЅТ и ожидания подтверждения регистрации в виде ответной телеграммы RABЅТ.

BST-телеграмма может содержать до 15 групп значений двоичных сигналов. Каждая группа содержит:

- метку времени с дискретностью присвоения 10 мс;
- тип группы, определяющий функциональное назначение;
- номер группы, уточняющий её тип;
- значения 12 двоичных сигналов;
- признаки изменения этих двоичных сигналов (12 соответственно).

1.3.4 Телеграмма Ү-функции

Телеграмма Y-функции предназначена для получения от коммуникационного модуля идентификаторов (Y-адресов), используемых далее для чтения или записи значений соответствующих сигналов по инициативе ВУ (телеграммами PL/PS).

В ТПТС-НТ Y-адрес представляет собой полное название сигнала, упакованное в бинарный формат. В одной телеграмме Y-функции может быть запрошено до 32 Y-адресов сигналов.

Для сигналов головных операторов полная спецификация сигнала содержит: тип модуля, номер станции ввода-вывода (для интерфейсных модулей и модулей связи с процессом), номер слота модуля (для модулей связи с процессом), тип и номер сигнала.

Для канальных операторов полная спецификация сигнала содержит: тип канального оператора, номер канального оператора (в процессоре автоматизации), тип и номер сигнала.

Векторы двоичных значений предназначены для чтения сообщений головных и канальных операторов по инициативе ВУ.

Ү-адрес представляет собой 32-битное значение.

1.3.5 PS-телеграмма

PS-телеграмма предназначена для записи значений аналоговых или двоичных параметров. Допустимые для записи значения объявлены как входы канальных операторов.

В одной PS-телеграмме можно указать до 32 параметров. Ответом на PS-телеграмму является телеграмма RPS.

При записи "1" во вход команды начинается отсчёт времени, и через 2 секунды вход обнуляется (защитный механизм). При записи "0" отсчёт времени, если он был, прекращается. Для продолжительного удержания "1" на входе требуется периодическая (с интервалом менее 2 секунд) отправка PS-запроса записи "1".

1.3.6 *PL-телеграмма*

PL-телеграмма предназначена для чтения значений аналоговых или двоичных параметров. Допустимые для чтения значения объявлены как выходы канальных операторов, а также сообщения головных и канальных операторов.

В одной PL-телеграмме можно запросить до 32 параметров. Коммуникационный модуль при получении PL-телеграммы формирует ответную телеграмму RPL со значениями параметров.

1.3.7 Телеграмма контроля состояния связи LUT

Телеграмма контроля состояния связи LUT каждую минуту передается процессором автоматизации тем абонентам, которые зарегистрировались на ее получение. Чтобы зарегистрироваться, абонент должен послать телеграмму ALUT и ожидать в ответ телеграмму RALUT, служащую подтверждением регистрации.

1.3.8 Телеграмма синхронизации единого времени SYN

Телеграмма времени SYN предназначена для установки единого времени всех абонентов шины EN.

Коммуникационный модуль принимает телеграмму времени по шине EN и устанавливает время всех связанных с ним модулей. Коммуникационный модуль никогда не передаёт телеграммы времени другим абонентам шины EN.

1.3.9 Общий формат телеграмм ЕN-шины

Телеграммы прикладного уровня инкапсулируются в поле «Данные» кадра Ethernet (рисунок 2).

Заголовок Ethernet										Заголовок LLC					
DA					SA							- Suconoson LLC			
				ZBTA 2 6.						QBTA		L	DSAP	SSAP	Mode
										2	26.		16.	16.	16.
	Телеграмма прикладного уровня														
BD	LG	OPC	PBI	NR PBI		LNA	DATA		ABLNR		ABI	LNA	MT	EN	
16.	16.	16.	26	26.		26.		байт	26	5.	26.		16.	16.	

Рисунок 2

- BD- байт, сигнализирующий о начале телеграммы прикладного уровня. Всегда равен 0xEF.
- LG длина телеграммы. Считается от PBLNR до EN включительно. Примечание: длина телеграммы может принимать только нечетные значения.

PBLNR – номер программного блока-получателя телеграммы в принимающем абоненте.

PBLNA – имя программного блока-получателя телеграммы в принимающем абоненте.

DATA – полезные данные телеграммы прикладного уровня.

ABLNR – номер программного блока-отправителя телеграммы в передающем абоненте.

ABLNA – имя программного блока-отправителя телеграммы в передающем абоненте.

МТ – байт, указывающий на очередь телеграммы в многоадресной посылке. На прикладном уровне возможна посылка многоадресных телеграмм с максимальным количеством адресов абонентов-получателей не более 8. На уровне протокола LLC такие телеграммы посылаются в виде последовательности одноадресных телеграмм, причем для каждого получателя в старшем полубайте байта МТ указывается общее количество абонентов-получателей (минус единица), а в младшем полубайте байта МТ порядковый номер данного абонента в последовательности (начиная с 0). Байт МТ используется при извлечении из многоадресных телеграмм данных, специфичных для каждого абонента-получателя. Отсчет порядковых номеров начинается с 0. Если телеграмма адресована только одному абоненту, то байт МТ в этой телеграмме равен 0х00.

EN – концевой код. Указывает на конец телеграммы прикладного уровня. В кадре Ethernet после этого байта могут быть только биты-заполнители и контрольная сумма кадра. Байт EN всегда равен 0x04.

Телеграмме прикладного уровня предшествуют заголовок Ethernet и заголовок LLC, включающие:

ZBTA – адрес абонента-получателя телеграммы прикладного уровня, входящий в MAC-адрес абонента-получателя DA.

QBTA – адрес абонента-отправителя телеграммы прикладного уровня, входящий в MAC-адрес абонента-отправителя SA.

L – длина полезных данных в кадре Ethernet

DSAP – идентификатор получателя уровня LLC

SSAP – идентификатор отправителя уровня LLC

MODE – управляющее поле LLC

2 Реализация протокола EN в ПП «СКАДА А-СОФТ»

2.1 Общее описание

Реализация протокола EN в ПП «СКАДА А-СОФТ» включает в себя:

- контроллеры модуля EN;
- контроллеры модуля Логический уровень;
- библиотеки шаблонов параметров;
- библиотеки виджетов.

Алгоритм обмена данными между компонентами ПП «СКАДА А-СОФТ» при работе с протоколом EN изображен на рисунке 3.

При открытии видеокадра для расположенных на нем элементов инициируется запрос ламповых (сигнальных) телеграмм. Ламповые телеграммы содержат данные, характеризующие текущее состояние устройства. При открытии окна управления элемента инициируется запрос всех данных (полный запрос), который позволяет получить полный набор диагностических данных. Кнопки окна управления соответствуют командам управления.

Для предварительной обработки сигналов команд в алгоритм обмена включается логический уровень. Логический контроллер выполняет математическую обработку данных по заданным алгоритмам. Например, команда управления «ОТКРЫТЬ» должна подаваться на ТПТС одновременно с подтверждением. Поэтому логический уровень ожидает нажатия кнопки «ПОДТВЕРДИТЬ», и лишь затем формирует соответствующие выходные сигналы. Система периодически опрашивает выходы логического уровня. Если значение изменилось по сравнению с последним циклом опроса, то данные передаются сетевому компоненту модуля ЕN для отправки телеграммы на ТПТС. Данные, поступившие от сетевого компонента, отображаются в графическом компоненте модуля EN в качестве атрибутов параметра контроллера. Так они становятся доступны для графической подсистемы ПП «СКАДА А-СОФТ».

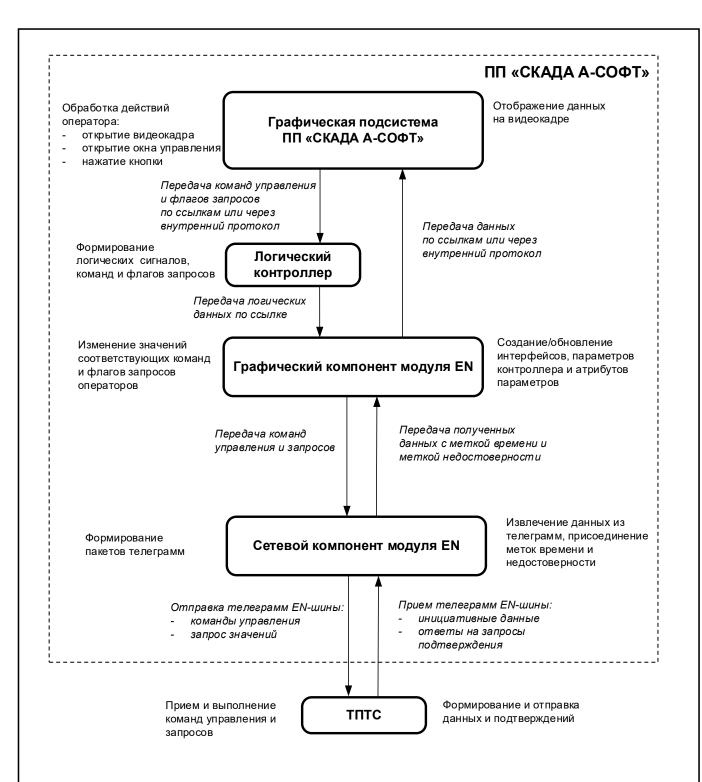


Рисунок 3

База данных подсистемы «Сбор данных» при получении данных по протоколу EN включает в себя:

- библиотеки шаблонов параметров;
- контроллеры модуля EN;
- логические контроллеры.

Библиотеки шаблонов параметров описаны в разделе 3.

П р и м е ч а н и е. Контроллеры модуля EN и контроллеры логического уровня формируются из GET-проекта программно (раздел 4).

2.2 Логические контроллеры

При формировании базы из GET-проекта создаются контроллеры логического уровня GUI X, TPTS YYY Z и Protocol.

Параметры контроллеров GUI_X основаны на шаблонах параметров из библиотеки NT_tmp (рисунок 4). Параметры контроллеров GUI_X предназначены для обработки команд и подтверждений команд, заданных оператором в графическом интерфейсе.

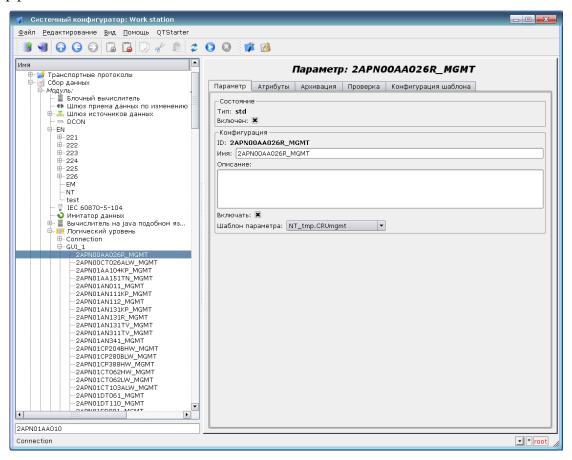


Рисунок 4

Параметры контроллеров TPTS_ YYY_Z основаны на шаблонах параметров из библиотеки GateNTMain (рисунок 5). В них выполняется обработка команд и устанавливается связь между атрибутами параметров контроллеров GUI_X и атрибутами параметров контроллеров модуля EN (в примере на рисунке 6 привязки обведены).

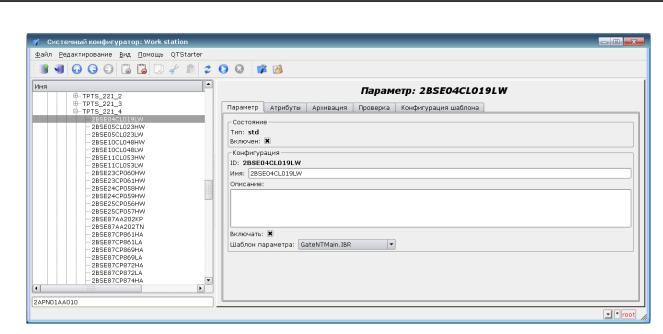


Рисунок 5

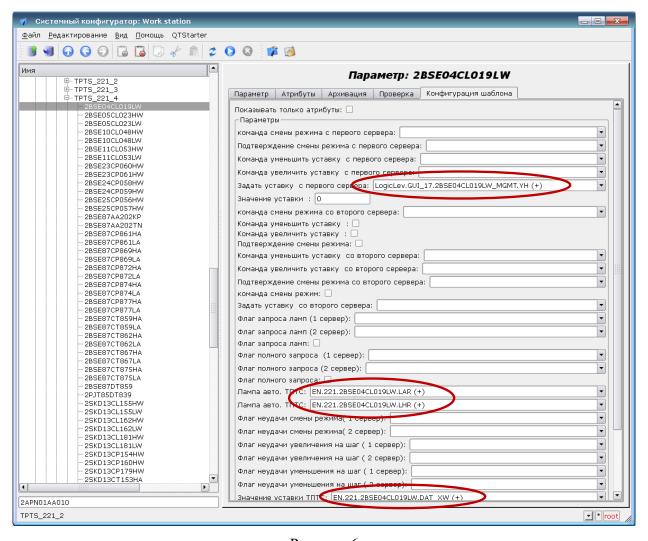


Рисунок 6

Параметры контроллеров Protocol основаны на шаблоне параметров protocol из библиотеки NT_tmp (рисунки 7 и 8). В них происходит обработка входных значений атрибутов и занесение их в таблицу, из которой виджет протокола событий формирует строки протокола.



Рисунок 7

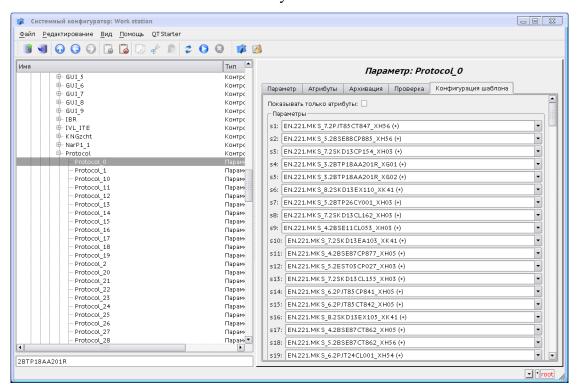


Рисунок 8

3 Библиотеки шаблонов подсистемы «Сбор данных»

3.1 Библиотека шаблонов операторов SYSTEM_NT

Библиотека SYSTEM_NT содержит шаблоны канальных операторов протокола EN (рисунок 9).

Шаблоны описывают входы, выходы и сообщения для каждого канального оператора. Эти шаблоны используются модулем сбора данных EN при разборе телеграмм, полученных от ТПТС, и для формирования телеграмм для отправки в ТПТС.

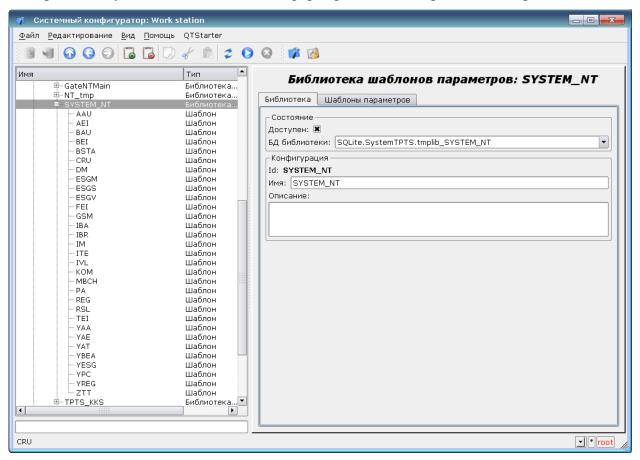


Рисунок 9

На рисунке 10 приведен пример таблицы шаблона, описывающего канальный оператор CRU.

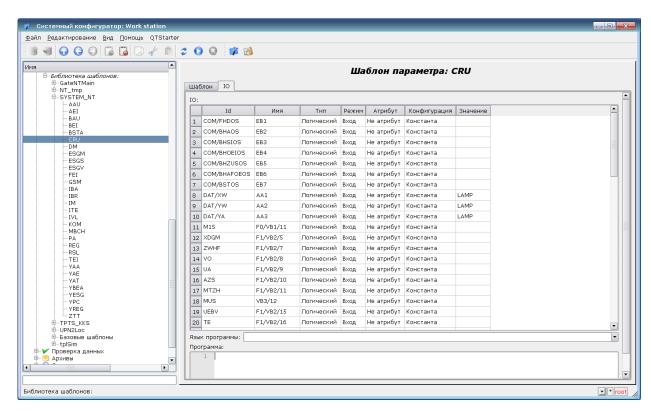


Рисунок 10

Описание значимых столбцов таблицы:

Id – имя и тип атрибута в следующем формате:

- СОМ/Имя вход оператора (команда);
- DAT/Имя выход оператора (данные);
- Имя диагностические двоичные данные.

 $\it Имя$ — тип атрибута/бит диагностических двоичных данных в следующих форматах:

- Для входов и выходов оператора определены следующие типы:
 - АА аналоговый выход, только чтение;
 - ЕА аналоговый вход, только запись;
 - АВ двоичный выход, только чтение;
 - EВ двоичный вход, только запись (в отдельных случаях используется в качестве двоичного выхода).
- Для битов диагностических данных тип состоит из:

Типа и номера группы BST-телеграммы: F –неисправность, B – команда оператора, Z – сигналы состояния;

Номера вектора VB из 16 двоичных значений;

Номера бита в векторе/группе.

Значение — Содержит специальные метки атрибутов. На данный момент устанавливается только метка лампового запроса (для данных, сигнализирующих о состоянии устройства, соответствующего оператору).

Поскольку не все операторы имеют уникальный байтовый код, часть шаблонов соотносится с кодом операторов с другим именем (в BST-телеграмме) или запрашивается по другому имени (в Y-телеграмме). Например, шаблоны ESGS, ESGM, ESGV соответствуют канальному оператору ESG.

3.2 Библиотека шаблонов параметров GateNTMain

Библиотека шаблонов параметров GateNTMain содержит шаблоны для обработки команд для исполнительных механизмов и уставок и передачи их в параметры контроллеров модуля EN (рисунок 11).

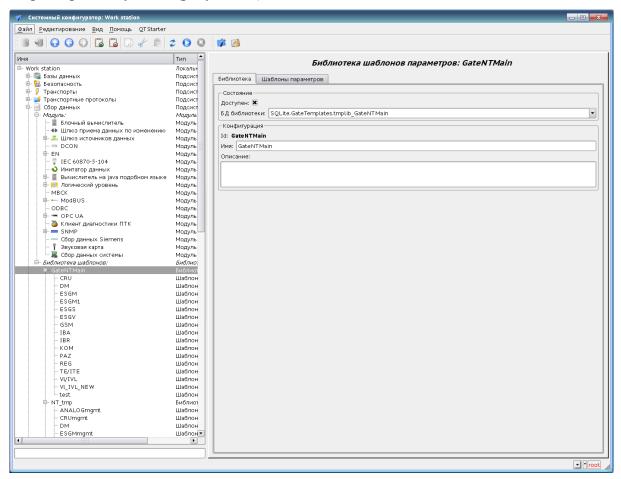


Рисунок 11 Библиотека GateNTMain содержит следующие шаблоны:

CRU – управление регулирующим исполнительным механизмом и регулятором с одним или двумя параметрами регулирования;

DM –диагностический модуль;

ESGM – управление мотором;

ESGS – управление задвижкой;

ESGV – управление клапаном;

GSM – управление;

ІВА – изменение группы уставок (до 8 уставок);

IBR – изменение одной уставки;

REG – управление регулирующим исполнительным механизмом;

TE/ITE – дистанционная команда переключения режимов;

VI/IVL – выбор устройства, которое будет использоваться.

Каждый шаблон на вкладке IO имеет таблицу входов/выходов шаблона и программу обработки. На рисунке 12 приведен пример вкладки IO шаблона CRU.

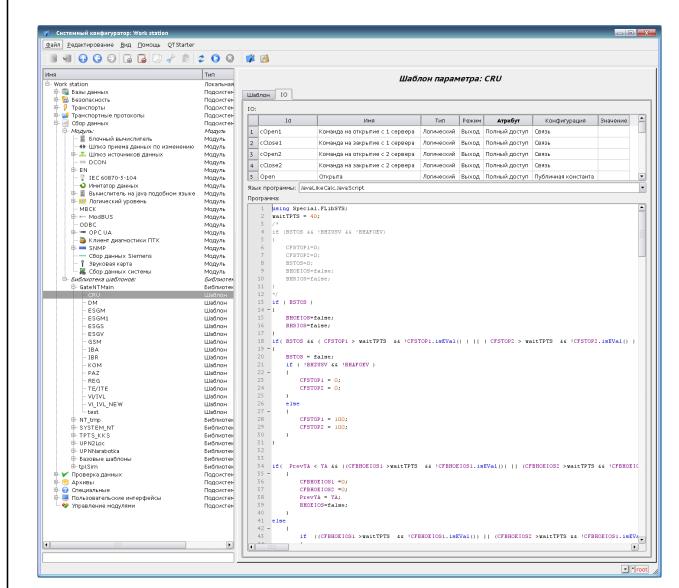


Рисунок 12

Шаблоны библиотеки GateNTMain используются при автоматическом создании базы для создания логических контроллеров типа TPTS $\it YYY Z$ (см. 2.2).

3.3 Библиотека шаблонов параметров NT_tmp

Библиотека шаблонов параметров NT_tmp содержит шаблоны для обработки команд для исполнительных механизмов и уставок, полученных от графического интерфейса. Также в этих шаблонах происходит обработка запросов значений для элемента при открытии видеограммы.

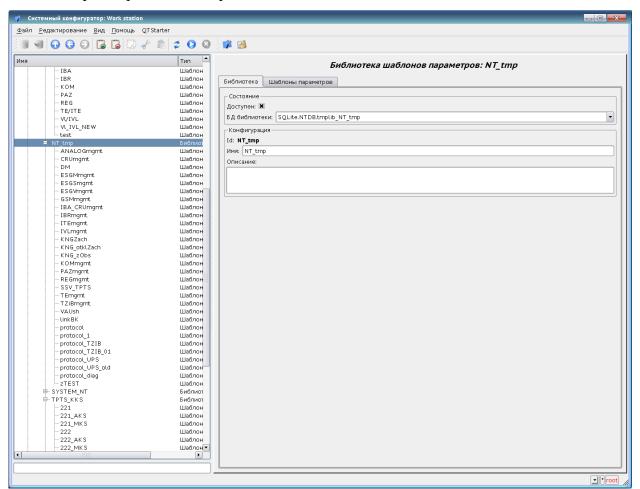


Рисунок 13

Библиотека NT_tmp содержит следующие шаблоны:

ANALOGmgmt – обработка смены уставок для аналогового параметра;

CRU – шаблон для протоколирования состояния регулирующего исполнительного механизма;

CRUmgmt – обработка команд на регулирующий исполнительный механизм (кроме уставок);

DM – диагностический модуль;

ESGM – шаблон для протоколирования состояния мотора;

ESGMmgmt – обработка команд управления мотором;

ESGS – шаблон для протоколирования состояния задвижки;

ESGSmgmt – обработка команд управления задвижкой;

ESGV – шаблон для протоколирования состояния клапана;

ESGVmgmt – обработка команд управления клапаном;

IBA_CRUmgmt – обработка задания коэффициентов регулятора для регулируемого параметра. Шаблон аналогичен ANALOGmgmt, только меняются не уставки, а коэффициенты регулятора;

IBRmgmt – обработка задания уставок;

ITE – шаблон для протоколирования состояния режима автоматический/ дистанционный;

ITEmgmt – обработка команды смены режима автоматический/дистанционный;

IVLmgmt – обработка команд для выбора устройства;

REGmgmt – обработка команд на регулирующий исполнительный механизм;

TZiBmgmt – обработка команды смены режима ввод/вывод (шаблон аналогичен шаблону ITEmgmt);

protocol – обработка входных значений атрибутов, для которых задано протоколирование, и при изменении занесение сообщения в таблицу ArchMess базы SQLite. TestProgect. Сообщения из таблицы ArchMess используются в виджете Protocol.

Шаблоны библиотеки NT_tmp используются при автоматическом создании базы для создания логических контроллеров типа GUI_X, protocol и protocol_state (см. 2.2).

3.4 Библиотека шаблонов проекта TPTS_KKS

В библиотеке шаблонов «TPTS_KKS» размещается информация о проекте, реализуемом в ТПТС, а так же устанавливается связь между управляющим оператором или атрибутом AKS/MKS и KKS-кодом.

П р и м е ч а н и е. Библиотека формируется автоматически при создании базы из GEN-проекта (раздел 4).

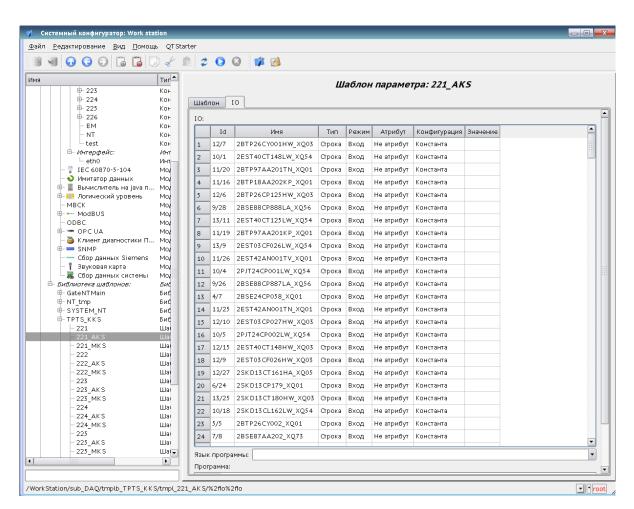


Рисунок 14

Для каждого контроллера ТПТС создаются три шаблона (рисунок 14):

имя — включает в себя список всех параметров, получаемых посредством канальных операторов. Имя совпадает с именем контроллера модуля EN;

 ums_AKS — включает в себя список всех параметров, получаемых в телеграммах AKS;

 ums_MKS — включает в себя список всех параметров, получаемых в телеграммах MKS.

Значимые столбцы в таблице на вкладке «IO» имеют следующие значения:

Id – адрес параметра в телеграмме в следующем формате:

- номер телеграммы/позиция в телеграмме для AKS и MKS телеграмм;
- имя оператора/номер оператора –для BST телеграмм.

Имя – KKS-код параметра, принятый в проекте АСУ ТП.

4 Формирование базы данных для обмена по протоколу EN

4.1 Порядок действий при формировании базы данных модуля EN

Формирование базы данных для обмена по протоколу EN включает в себя следующие действия:

- формирование файлов INFO.db, Protocol.db, ProjectBase.db из GET-проекта контроллеров ТПТС, в соответствии с 4.2;
- создание в конфигураторе модуля EN новых интерфейсов и контроллеров, в соответствии с разделом 5 (требуется только при первом создании базы);
- загрузка данных в ПП «СКАДА А-СОФТ», в соответствии с 4.3.

Примечание. При повторном создании базы из GET-проекта требуется выполнять только действия, описанные в 4.2.

4.2 Формирование файлов INFO.db, Protocol.db, ProjectBase.db из GET-проекта

Формирование файлов баз данных из GET-проекта производится программой getdb, реализованной для различных объектов автоматизации под ОС Astra Linux1.6 и ОС Windows. Результатом работы программы являются базы данных INFO.db, Protocol.db, ProjectBase.db в СУБД SQLite.

INFO.db — база данных, в которой хранятся ККS коды, названия параметров, единицы измерения, пределы измерения величин, тип телеграммы, номера стоек ТПТС, номера каналов для подключения и т.д.

Protocol.db – база данных, в которой хранятся диагностические параметры сигналов, последние значения, уставки.

ProjectBase.db – эта база данных включает в себя таблицы связей логических уровней (LogLevPRM_), таблицы архивов (Archive_val, Archive_val_proc), таблицы входных/выходных параметров (tmplib_TPTS_KKS_io).

Для формирования баз данных необходимо выполнить следующие действия независимо от OC:

1) Установить на ПК СУБД PostgreSQL версии 9.х (если PostgreSQL 9.х уже установлена, можно пропустить этот шаг).

- 2) После установки СУБД PostgreSQL необходимо развернуть дамп со вспомогательными базами. Для этого необходимо выполнить следующие действия:
 - скопировать с изделия программного из папки Translator файл getsys.backup на ПК;
 - запустить pgAdminIII;
 - подключиться к серверу PostgreSQL9.3(localhost:5432);
 - создать новую базу с именем getdb и в ней создать схему getsys;
 - восстановить базу из файла getsys.backup.

П р и м е ч а н и е. Разворачивать вспомогательные базы необходимо только один раз после установки СУБД PostgreSQL.

- Развернуть в PostgreSQL актуальные базы данных для текущего проекта.
 Для этого выполнить следующие действия:
- скопировать полученный .dump файл на ПК;
- запустить pgAdminIII: в OC Windows выбрать в меню Пуск \rightarrow Bce программы \rightarrow PostgreSQL9.3 \rightarrow pgAdminIII (рисунок 15), в OC AstraLinux 1.6 выбрать в меню Пуск \rightarrow Разработка \rightarrow pgAdminIII.

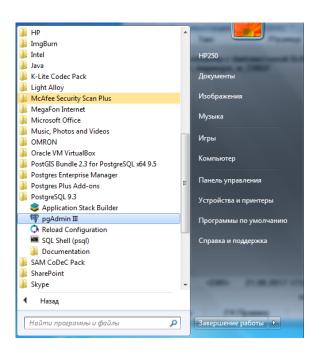


Рисунок 15

– подключиться к серверу PostgreSQL9.3 (localhost:5432), введя пароль, заданный при установке PostgreSQL (рисунок 16);

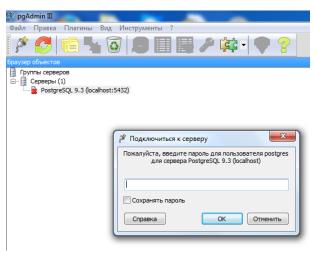


Рисунок 16

- левой клавишей мыши открыть вкладку «Базы данных» (рисунок 17);

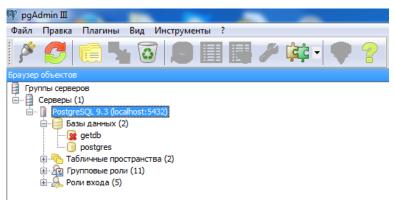


Рисунок 17

- левой клавишей мыши открыть вкладку «getdb» (рисунок 18);

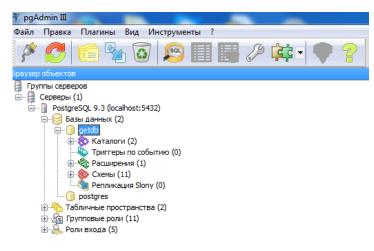


Рисунок 18

— щелкнуть правой клавишей мыши по базе данных *getdb*, вызвать контекстное меню и выбрать в нем пункт «Восстановить» (рисунок 19);

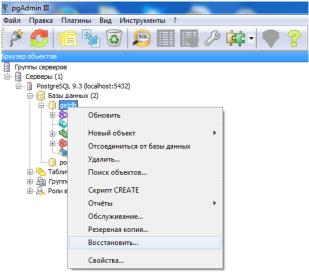


Рисунок 19

– указать путь к .dump файлу, из которого будет производиться восстановление (рисунок 20);

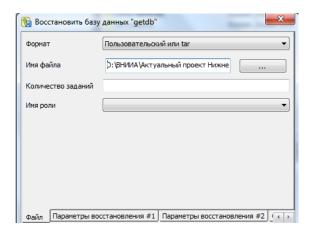


Рисунок 20

- указать необходимые параметры восстановления (рисунок 21);

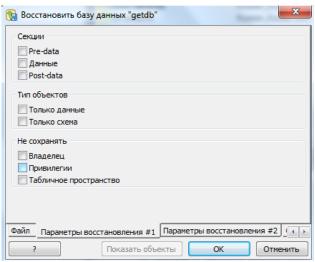


Рисунок 21

- запустить процесс восстановления.

П р и м е ч а н и е. При повторном восстановлении базы из дампа необходимо в базе getdb стирать соответствующую схему (в примере это *nnpo24481955031321get*). В ОС Windows при стирании схемы использовать пункт «Каскадное удаление» выпадающего меню по нажатию правой кнопки мыши на имени схемы.

4) Запустить актуальную версию программы *getdb_xx* (файл getdb_new.exe). Под ОС Windows транслятор реализован для проекта ННПО, под ОС Astra Linux 1.6 – для проектов АСУ ТП Башнефть: версия 2.1 UNH— для ППСН «Уфанефтехим»; версия 2.1 для ПОН «Шкапово», НСП «Телепаново», УПН-276, УПС-56; версия 2.2 для ППСН «Субханкулово» и ППСН «Калтасы»).

B OC Astra Linux запуск программы осуществляется из Терминала Fly командой: ./getdb new.

Затем выполнить следующие шаги:

- выбрать нужный проект (рисунок 22);

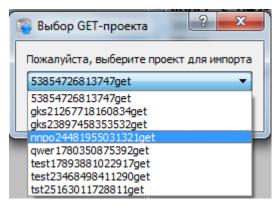


Рисунок 22

- выбрать режим Автоматический (рисунок 23);

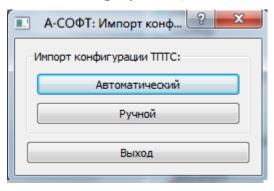


Рисунок 23

- дождаться завершения формирования файлов (рисунок 24);

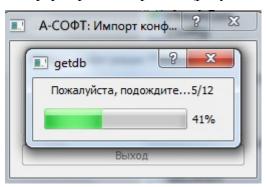


Рисунок 24

— вновь сформированные файлы баз данных (**INFO.db**, **Protocol.db**, **ProjectBase.db**) каталога getdb_xx/A-SOFT скопировать на ПК под управлением ОС Astra Linux с установленной ПП «СКАДА А-СОФТ». Файлы поместить в каталог /var/spool/scada/DATA.

4.3 Загрузка данных в ПП «СКАДА А-СОФТ»

В ПП «СКАДА А-СОФТ» создать интерфейс и контроллеры, как описано в разделе 5. Количество контроллеров должно соответствовать числу контроллеров ТПТС, с которыми будет осуществляться информационный обмен.

Создать новую базу данных, сохранить в ней созданную конфигурацию интерфейсов и контроллеров и выйти из СКАДА.

Добавить в конфигурационный файл /etc/scada.xml в секцию <tblid="DB">следующие строки:
<fldID="ProjectBase" TYPE="SQLite" NAME="ProjectBase" ADDR="./DATA/ProjectBase.db" EN="1" />
<fldID="INFO" TYPE="SQLite" NAME="INFO" DESCR="1" ADDR="./DATA/INFO.db" EN="1" />
<fldID="Protocol" TYPE="SQLite" NAME="Protocol" DESCR="11" ADDR="./DATA/Protocol.db" EN="1" />

Запустить ПП «СКАДА А-СОФТ».

После запуска СКАДА в контроллерах EN должны будут появиться параметры (рисунок 25).

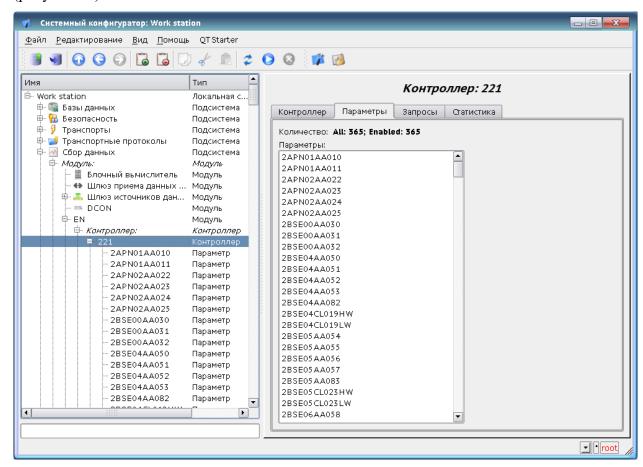


Рисунок 25

Если после запуска СКАДА параметры в контроллере отсутствуют, проверить, что интерфейс запущен, и контроллеры включены и запущены.

5 Конфигурирование интерфейсов и контроллеров

5.1 Общее описание

Модуль EN включает в себя два типа элементов: интерфейс и контроллер.

Интерфейсы соответствуют сетевым интерфейсам компьютера (eth0, eth1 и т.п.), через которые происходит обмен с шиной ТПТС, и осуществляют сетевое взаимодействие с ТПТС, включая:

- инициализацию обмена с ТПТС;
- передача/получение телеграмм;
- распределение телеграмм по абонентам (контроллерам модуля EN).

Каждый контроллер содержит параметры, поступающие с одного ТПТС.

Схема взаимодействия контроллеров и интерфейсов с шиной EN представлена на рисунке 26.

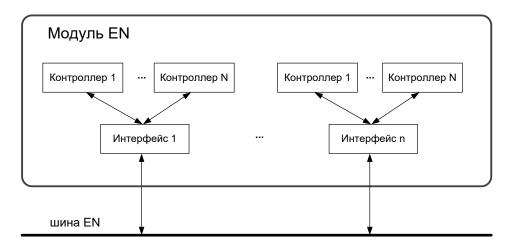


Рисунок 26

5.2 Конфигуратор интерфейса

Для каждого сетевого интерфейса компьютера (eth0, eth1 и т.п.), должен быть создан отдельный контролер «Интерфейс».

Конфигуратор контроллера «Интерфейс» имеет вид, приведенный на рисунке 27.

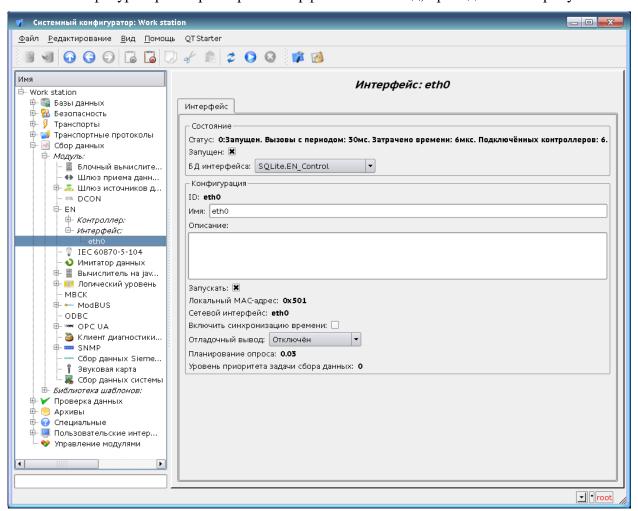


Рисунок 27

Конфигуратор интерфейса имеет следующие поля состояния:

Статус – отображает состояние связи с ТПТС: «-» если нет, «ОК» если есть;

Запущен – активирован сетевой интерфейс, инициирован сетевой обмен по прикладному протоколу;

БД интерфейса – БД для сохранения конфигурации интерфейса.

Поля блока «Конфигурация» имеют следующие значения:

ID– идентификатор интерфейса;

Имя – имя, под которым интерфейс отображается для пользователя;

Описание – в свободной форме описание интерфейса;

Запускать – флаг запуска при старте;

Покальный MAC-адрес — задается произвольно, но не должен совпадать с MAC-адресами ТПТС и локальными MAC-адресами других узлов СКАДА;

Сетевой интерфейс – сетевой интерфейс, через который локальный компьютер связывается с ТПТС. Выбирается из списка сетевых интерфейсов на локальном компьютере;

Включить синхронизацию времени – инициация отправки пакетов синхронизации SYN:

Отпадочный вывод – вывод в консоль сообщений об отправленных и поступивших пакетах, статусе связи с ТПТС;

Планирование опроса — минимальный размер цикла отправки запросов и обработки полученных сетевых данных;

Уровень приоритета задачи сбора данных – Приоритет задачи котроллера.

5.3 Конфигуратор контроллеров

Конфигуратор контроллера в СКАДА имеет вид, приведенный на рисунке 28.

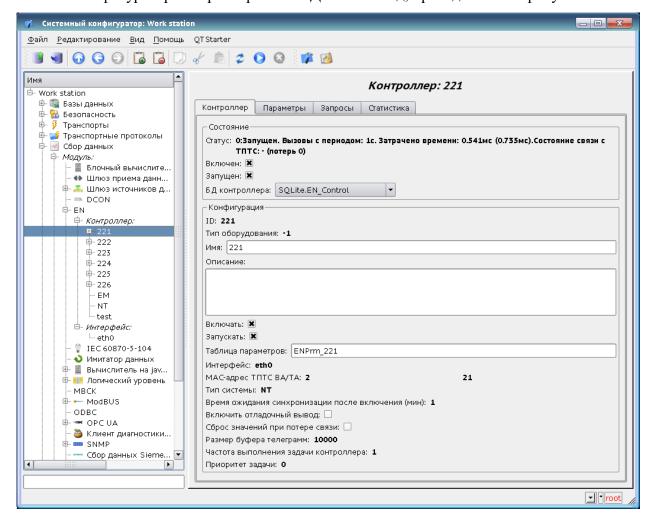


Рисунок 28

Конфигуратор контроллера имеет следующие поля в блоке «Состояние»:

Статус – отображает состояние связи с ТПТС: «-» если нет, «ОК» если есть;

Включен - состояние контроллера "Включен". При включении контроллера происходит загрузка конфигурации параметров из БД;

Запущен - состояние контроллера "Запущен". Исполняющийся контроллер выполняет получение данных от контроллера «Интерфейс» и включает механизмы доступа к этим данным;

БД интерфейса – БД для сохранения конфигурации интерфейса.

Блок «Конфигурация» имеет следующие состояния:

ID – идентификатор контроллера;

Тип оборудования – номер типа оборудования. В данном случае все контроллеры имеют один стандартный тип -1;

Имя – имя контроллера, отображается в конфигураторе;

Описание – описание контроллера в свободной форме;

Включать – флаг включения контроллера при запуске ПП «СКАДА А-СОФТ»;

Запускать – флаг запуска контроллера при запуске ПП «СКАДА A-СОФТ»;

Таблица параметров – имя таблицы для хранения конфигурации параметров;

Интерфейс – имя созданного контроллера «Интерфейс». Выбирается из списка;

MAC-адрес $T\Pi TC$ ba/ta — два значимых байта MAC-адреса контроллера $T\Pi TC$;

Тип системы — Тип системы определяет подключаемую библиотеку шаблонов, состав и структура операторов различны для разных систем; доступные системы: EM, NT.

Включить отладочный вывод – включает вывод в терминал отладочных сообщений, в том числе телеграмм;

Сброс значений при потере связи – при включенном флаге в случае потери связи значения атрибутов устанавливаются в <EVAL> (недостоверное значение);

Размер буфера телеграмм – размер буфера для входных телеграмм для одного;

Частота выполнения задачи контроллера — минимальный размер цикла обработки данных в контроллере;

Приоритет задачи – приоритет задачи котроллера.

При включении связи (Флаг ЗАПУЩЕН на вкладке КОНТРОЛЛЕР) в соответствии с проектом формируются параметры контроллера. Вкладки ЗАПРОСЫ (рисунок 29) и СТАТИСТИКА (рисунок 30) можно использовать для диагностики состояния связи с ТПТС.

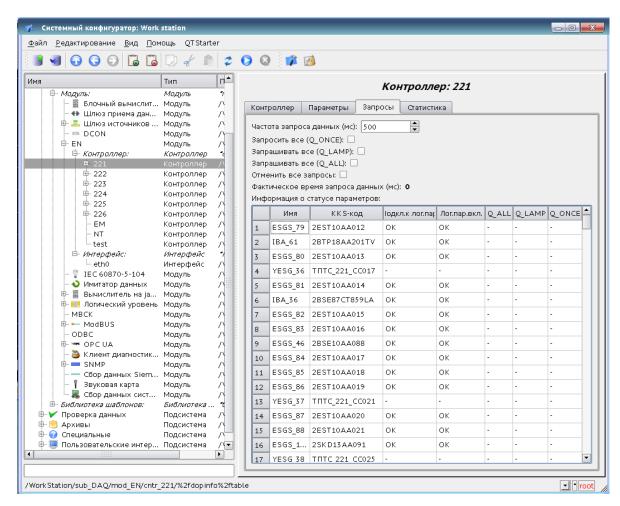


Рисунок 29

На вкладке «Запросы» отображается состояние запросов следующим образом:

Частота запроса данных – минимальный период цикла запроса данных (то есть серии пакетов PL).

 Φ лаг Запросить все (Q_ONCE) — единичный запрос значений всех запросных значений. Для операторов, поддерживающих данную функцию (имеющих запросные значения), в таблице выставляется флаг ОК, после окончания запроса флаг снимается. Данный запрос используется для инициализации проекта значениями (при проверке проекта).

 Φ лаг Запрашивать все (Q_LAMP) — периодический запрос ламповых значений. Для операторов, поддерживающих данную функцию (имеющих ламповые значения), в таблице выставляется флаг ОК. Данный запрос может использоваться для оценки нагрузки на сеть, процессор контроллера и процессор РС при открытии большого числа видеокадров.

 Φ лаг Запрашивать все (Q_ALL) — периодический запрос всех запросных значений. Для операторов, поддерживающих данную функцию (имеющих запросные

значения), в таблице выставляется флаг ОК. Данный запрос может использоваться для оценки нагрузки на сеть, процессор контроллера и процессор РС при открытии большого числа видеокадров и окон управления.

Отменить все запросы – снимает все выставленные флаги запросов.

Фактическое время запроса данных — время, затраченное на получение требуемых значений. При открытии видеокадра для размещенных на нем устройств включается запрос ламповых значений, при открытии окна управления — запрос всех запросных значений. Данный параметр зависит от значения параметра

Частота обработки сетевых данных (кратен ему).

На вкладке «Статистика» отображается состояние логического соединения с ТПТС и статистика по всем типам телеграмм (рисунок 30). Данная вкладка помогает осуществлять диагностику проекта.

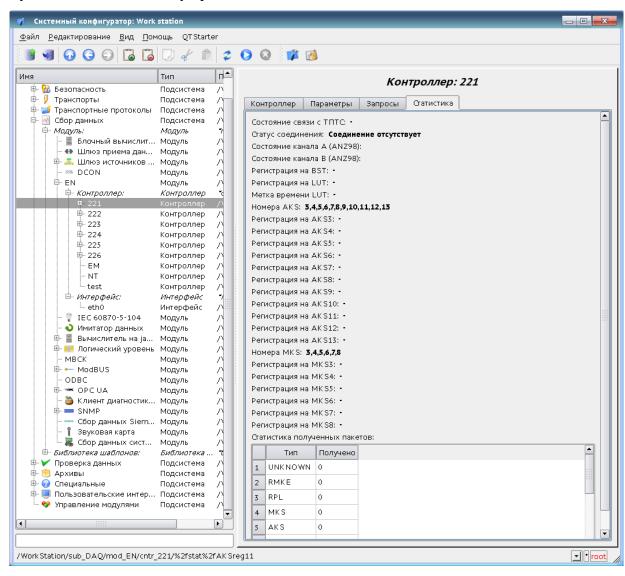


Рисунок 30

Состояние связи с ТПТС – дублирует статус на вкладке «Контроллер» («–» если нет связи, «ОК» если есть).

Статус соединения – возможные значения:

"" – контроллер не запущен;

"Соединение отсутствует" – нет связи (причины – не подключен кабель, отключен контроллер, неправильно установлены настройки (интерфейс, адреса));

"Отсутствует синхронизация времени" – время на PC и ТПТС различается более, чем на 5 секунд;

"Ожидание завершения синхронизации времени. Осталось М мин S сек" – при перезагрузке PC или ТПТС, а также при длительной потере связи необходимо дождаться устойчивой синхронизации времени (время ожидания устанавливается на вкладке «Контроллер»), после чего осуществляется инициализация проекта;

"Регистрация на BST, AKS, MKS телеграммы" – отправка на регистрацию на BST и указанные в проекте AKS, MKS телеграммы;

"Запрос Y-адресов" — запрос служебных адресов для дальнейшего получения запросных значений, выполняется при перезапуске СКАДА или при включении контроллера;

"Готов" – все процедуры инициализации завершены.

Состояние каналов A,B - состояние каналов интерфейсного модуля ТПТС-ЕМ, отображается при их изменении (в связи с чем приходит телеграмма ANZ98).

5.4 Параметры контроллеров

Параметры контроллеров модуля EN подсистемы формируются автоматически при формировании БД, как описано в разделе 4.

Каждый параметр имеет свой набор атрибутов, который зависит от типа параметра. Атрибуты параметров AKS_X являются аналоговыми параметрами, получаемыми в телеграммах AKS. Атрибуты параметров MKS_X являются дискретными параметрами, получаемыми в телеграммах MKS. Атрибуты параметров IBA_X являются уставками, получаемыми через канальный оператор IBA. Атрибуты параметров ТПТС_<контроллер>_<имя блока>являются диагностическими параметрами контроллеров ТПТС. Атрибуты параметров с именем <код KKS> являются сообщениями соответствующего канального оператора.

🏌 Системный конфигуратор: Work station - - X $\underline{\Phi}$ айл \underline{P} едактирование \underline{B} ид $\underline{\Pi}$ омощь QTStarter Тип Имя Параметр: AKS_3 2SKD13СТ16... Параме 2SKD13CT18... Параме 2SKD13CT18... Параме Параметр Атрибуты Архивация Проверка Доп. информация ·2SKD13EA103 Параме ·2SKD13EA107 Параме ID: AKS_3 Имя: AKS_3 -2SKD13EX101 Параме -2SKD13EX102 Параме Описание: 2SKD13EX104 Параме 2SKD13EX105 Параме 2SKD13EX106 Параме 2SKD13EX108 Параме 2SKD13EX109 Параме Подключение к логическому параметру: • 2SKD13EX110 Параме 2SKD13EX112 Параме Ошибка: **0** AKS 10 Параме Bits : 1 Параме 01 - 04 : **<EVAL>** <EVAL> <EVAL> <EVAL> AKS_12 Параме 05 - 08 : **<EVAL**> <EVAL> <EVAL> ∠EVAL> 09 - 12 : **<EV** Атрибут параметра
10 - 16 : **<EV** Илгибут параметра
10 : '28SE04CL019_XQ01'
Имя: '01 - 04'
17 - 20 : **<EV** Тип: 'Строка' AK S_13 EVAL> <EVAL> <EVAL> <EVAL> <EVAL> AKS_4 AKS_5 Параме Параме EVAL> <EVAL> <EVAL> - AKS_6 - AKS_7 Параме 21 - 24 : **<EVAL>** <EVAL> <EVAL> <EVAL> <EVAL> 25 - 28 : **<EVAL>** <EVAL> <EVAL> AKS 8 Параме Bits : 1 2 AKS_9 MKS_3 Параме 01 - 04 : **<EVAL>** <EVAL> <EVAL> <EVAL> Параме 05 - 08 : **<EVAL>** <EVAL> <EVAL> <EVAL> MKS_4 MKS_5 Параме Параме 09 - 12 : **<EVAL>** <EVAL> <EVAL> <EVAL> MKS 6 Параме 13 - 16 : **<EVAL>** <EVAL> <EVAL> <EVAL> Параме 17 - 20 : **<EVAL>** <EVAL> <EVAL> <EVAL> MKS_8 Параме 21 - 24 : **<EVAL>** <EVAL> <EVAL> <EVAL> ZTT 25 - 28 : **<EVAL>** <EVAL> <EVAL> <EVAL> TПТС_221_A... Параме ТПТС_221_А... ТПТС_221_А... Параме 01 - 04 : **<EVAL>** <EVAL> <EVAL> <EVAL> Параме ΤΠΤC_221_A... ΤΠΤC_221_A... Параме Параме 05 - 08 : **<EVAL>** <EVAL> <EVAL> <EVAL> 09 - 12 : **<EVAL>** <EVAL> <EVAL> <EVAL> TПТС_221_A... Параме 13 - 16 : **<EVAL>** <EVAL> <EVAL> <EVAL> ТПТС_221_А... Параме ТПТС_221_А... Параме 17 - 20 : **<EVAL>** <EVAL> <EVAL> <EVAL> 21 - 24 : **<EVAL>** Параме Папаме ▶ ТПТС_221_А... ТПТС_221_А 25 - 28 : **<EVAL>** <EVAL> <EVAL> <EVAL> 1 /WorkStation/sub_DAQ/mod_EN/cntr_221/prm_AKS_3/%2fval%2f2BSE04CL019_XQ01

Вкладка «Атрибуты» (рисунок 31) отображает атрибуты параметра.

Рисунок 31

На вкладке «Доп. информация» отображаются статусы каждого атрибута параметра (рисунок 32).

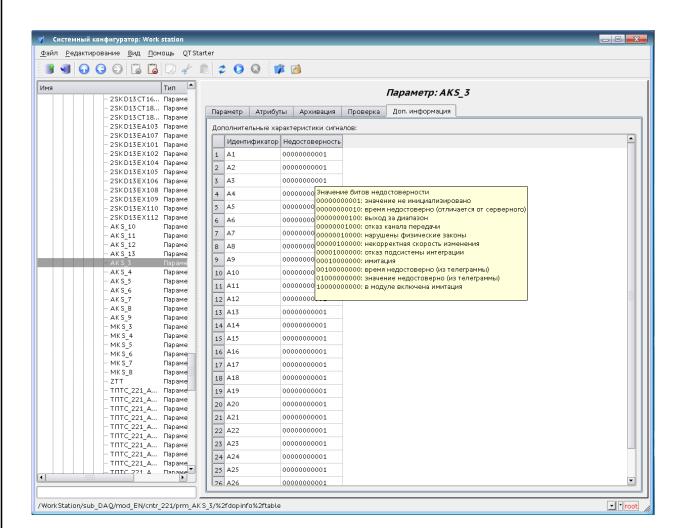


Рисунок 32

Недостоверности значений параметров операторов приведены в таблице 1.

Таблица 1

Значение в десятичном	Позиция бита	Значение бита недостоверности			
виде	недостовер				
	ности				
1	0	значение не инициализировано			
2	1	время недостоверно (время в телеграмме отличается от			
		текущего времени сервера больше чем на К секунд)			
4	2	выход за диапазон			
8	3	отказ канала передачи (связи с низовой подсистемой)			
16	4	нарушены физические законы (отключаемая функция)			
32	5	некорректная скорость изменения (отключаемая функция)			
64	6	отказ подсистемы (отсутствует связь с подсистемой			
		интеграции)			
128	7	имитация			
256	8	время недостоверно (получаем из телеграммы)			
512	9	значение недостоверно (получаем из телеграммы)			
1024	10	в модуле включена имитация			

6 Элементы графического интерфейса пользователя при работе с протоколом EN

6.1 Графический интерфейс пользователя

Графический интерфейс пользователя, разрабатываемый в ПП «СКАДА А-СОФТ», включает в себя набор видеокадров (мнемосхем).

В рабочей области мнемосхем могут размещаться статические и динамические объекты.

Статические объекты представляют собой текстовые надписи, рисунки, линии и прочие фигуры, выполненные в однотонной цветовой гамме, либо состоящие из разноцветных элементов.

Динамические объекты представляют собой пиктограммы, отображающие состояние механизмов, процессов, аналоговых и дискретных параметров. Операция выбора динамических элементов на мнемосхемах позволяет вызывать окна управления данными элементами. Окна управления создаются на основе виджетов, которые входят в состав библиотеки виджетов NT tmp и разработаны для применения с протоколом EN.

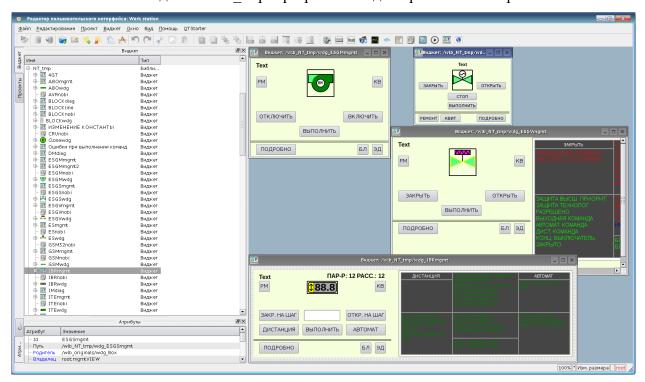


Рисунок 33

В 6.2 - 6.9 рассматриваются основные виджеты из состава библиотеки виджетов NT_tmp (для АСУТП нефте- и газоперерабатывающих станций). В разделе 8 описаны элементы, применяемые в АСУ ТП атомных электростанций.

6.2 Окно управления аналоговым параметром

Окно управления аналоговым параметром отображает значение, статус параметра (рисунок 34). Окно основывается на виджете analogMGMT из библиотеки NT tmp.

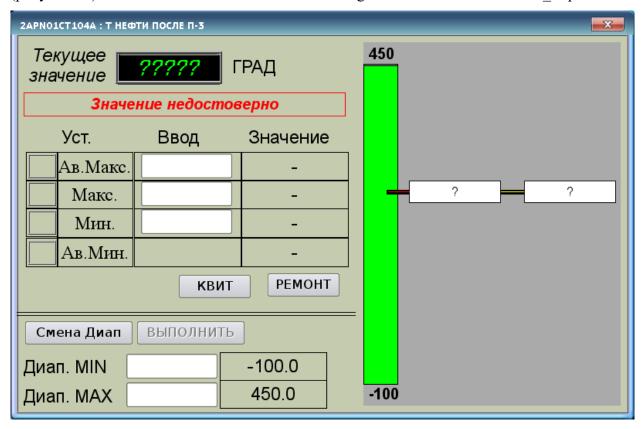


Рисунок 34

В заголовке окна выводится ККS-код элемента, в данном примере это 2APN01CT104A, и комментарий. В окне отображается текущее значение параметра, единицы измерения, уставки и диапазон.

В окне можно изменить диапазон и уставки, введя значения в соответствующие поля.

Для изменения уставок аналогового параметра в комплексе ТПТС используется канальный оператор **IBA**.

6.3 Окно управления задвижкой

Вид стандартного окна управления задвижкой приведен на рисунке 35. Вызов окна осуществляется нажатием левой клавишей «мыши» на пиктограмму элемента. Окно основывается на виджете **ESGSmgmt** из библиотеки NT tmp.

Рисунок 35

В заголовке окна выводится ККЅ-код элемента и комментарий.

В окне управления задвижкой находятся следующие элементы:

Пиктограмма – аналогичная пиктограмме на технологическом видеокадре. Для пиктограммы в стандартном окне управления используется те же принципы окрашивания в цвета и мигания, что и для пиктограммы на технологическом видеокадре.

Кнопка «ЗАКРЫТЬ» — кнопка команды управления «Закрыть» отражает три возможных состояния: кнопка недоступна, кнопка отжата, кнопка нажата. При недоступности кнопки (оборудование в ремонте, текущее состояние «ЗАКРЫТО») — кнопка неактивна. При открытии окна управления и доступности кнопки она всегда находится в отжатом состоянии (даже если нажать кнопку, закрыть окно управления и затем снова открыть его). При клике на кнопку «ЗАКРЫТЬ» она переходит в нажатое состояние. Если кнопка нажата, повторный клик на кнопку делает ее отжатой. Клик на любую из кнопок «ОТКРЫТЬ» или «СТОП» переводит кнопку «ЗАКРЫТЬ» в отжатое состояние. Если кнопка «ЗАКРЫТЬ» нажата, то при клике на кнопку «ВЫПОЛНИТЬ» посылается команда «Закрыть», а кнопка «ЗАКРЫТЬ» переходит в отжатое состояние.

Кнопка «ОТКРЫТЬ» — кнопка команды управления «Открыть» отражает три возможных состояния: кнопка недоступна, кнопка отжата, кнопка нажата. Реакция кнопки «ОТКРЫТЬ» аналогична реакции кнопки «ЗАКРЫТЬ». Кнопка становится недоступной

при текущем состоянии «ОТКРЫТО» и при выводе оборудования в ремонт. Если кнопка нажата, повторный клик на кнопку делает ее отжатой. При клике на кнопку «ОТКРЫТЬ» она переходит в нажатое состояние. Клик на любую из кнопок «ЗАКРЫТЬ» или «СТОП» переводит кнопку «ОТКРЫТЬ» в отжатое состояние. Если кнопка «ОТКРЫТЬ» нажата, то при клике на кнопку «ВЫПОЛНИТЬ» посылается команда «Открыть», а кнопка «ОТКРЫТЬ» переходит в отжатое состояние.

Кнопка «СТОП» - кнопка команды «Стоп» отражает три возможных состояния: кнопка недоступна, кнопка отжата, кнопка нажата. При недоступности кнопки (оборудование в ремонте) — кнопка не активная. После каждого действия оператора кнопка автоматически возвращается в отжатое состояние. При клике на кнопку «СТОП» посылается команда «Стоп», которая не требует подтверждения кликом на кнопку «ВЫПОЛНИТЬ».

Кнопка «ВЫПОЛНИТЬ» — используется для подтверждения выполнения команд «Закрыть»/«Открыть». При отсутствии выбора кнопок «Закрыть»/«Открыть» или выводе оборудования в ремонт кнопка неактивна. После каждого действия оператора кнопка автоматически возвращается в отжатое состояние.

Кнопка «РЕМОНТ» используется для вывода задвижки из управления при ремонте.

Кнопка «КВИТ» – кнопка квитирования мигания фона при смене состояния оборудования.

Кнопка «ПОДРОБНО» используется для вызова расширенного окна управления. Пример расширенного окна управления запорной арматурой приведён на рисунке 36.

Рисунок 36

Для управления задвижкой в комплексе ТПТС используется канальный оператор **ESGS**. Сообщения в расширенном окне управления соответствуют сообщениям канального оператора **ESGS**.

6.4 Окно управления клапаном отсечным

Вид стандартного окна управления клапаном отсечным приведен на рисунке 37. Вызов окна осуществляется нажатием левой клавишей «мыши» на пиктограмму элемента. Окно основывается на виджете **ESGVmgmt** из библиотеки NT tmp.

Рисунок 37

В заголовке окна выводится ККЅ-код элемента и комментарий.

Управление клапаном отсечным аналогично описанному в 6.3 (за исключением кнопки «СТОП»).

Кнопка «ПОДРОБНО» используется для вызова расширенного окна управления. Пример расширенного окна управления запорной арматурой приведён на рисунке 38.

Рисунок 38

Для управления задвижкой в комплексе ТПТС используется канальный оператор **ESGV**. Сообщения в расширенном окне управления соответствуют сообщениям канального оператора **ESGV**.

6.5 Окно управления клапаном регулирующим

Вид стандартного окна управления клапаном регулирующим (с окном подробно) приведен на рисунке 39. Вызов окна осуществляется нажатием левой клавишей «мыши» на пиктограмму элемента. Окно основывается на виджете **CRUmgmt** из библиотеки NT tmp.

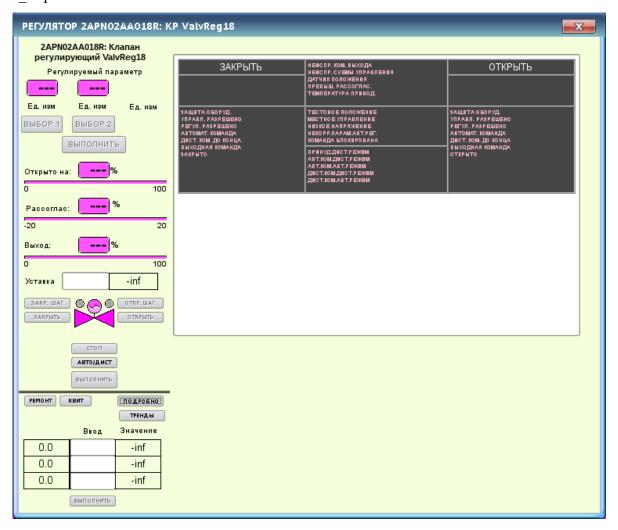


Рисунок 39

В заголовке окна выводится ККЅ-код элемента и комментарий.

В окне управления клапаном регулирующим находятся следующие элементы:

Значение и единицы измерения для регулируемых параметров.

Аналоговый индикатор с цифровым обозначением степени открытия клапана, дублированный полосой-индикатором.

Аналоговый индикатор с цифровым обозначением отклонения степени открытия клапана от заданного значения, дублированный полосой-индикатором.

Аналоговый индикатор с цифровым обозначением требуемого положения регулирования(только в режиме непрерывного регулирования), дублированный полосой-индикатором.

Поле ввода задания нового значения («Уставка»), которое отрабатывается только в режиме «АВТОМАТ».

Пиктограмма — аналогичная пиктограмме на технологическом видеокадре. Для пиктограммы в стандартном окне управления используется те же принципы окрашивания в цвета и мигания, что и для пиктограммы на технологическом видеокадре.

Кнопка «ЗАКР. НА ШАГ» – кнопка без фиксации, доступна только при состоянии «ДИСТАНЦИЯ» регулирующей арматуры. При недоступности кнопки (оборудование в ремонте или автоматический режим) – кнопка неактивна. При клике на кнопку «ЗАКР. НА ШАГ» на исполнительный механизм проходит команда закрытия арматуры на один шаг. Величина шага определяется аппаратурой ТПТС. Команда посылается на нижний уровень при переходе кнопки в отжатое состояние.

Кнопка «ОТКР. НА ШАГ» — кнопка без фиксации, доступна только при состоянии «ДИСТАНЦИЯ» регулирующей арматуры. При недоступности кнопки (оборудование в ремонте или автоматический режим) — кнопка неактивна. При клике на кнопку «ОТКР. НА ШАГ» на исполнительный механизм приходит команда открытия арматуры на один шаг. Величина шага определяется аппаратурой ТПТС. Команда посылается на нижний уровень при переходе кнопки в отжатое состояние.

Кнопка «ЗАКРЫТЬ» – кнопка команды «Закрыть» отражает три возможных состояния: кнопка недоступна, кнопка отжата, кнопка нажата. Кнопка становится доступной при наличии дистанционного режима, отсутствии вывода в ремонт и отсутствии состояния «Закрыто». При недоступности кнопки (арматура закрыта, оборудование в ремонте или автоматический режим) – кнопка неактивна. При открытии окна управления и доступности кнопки она всегда находится в отжатом состоянии (даже если нажать кнопку, закрыть окно управления и затем снова открыть его). При клике на кнопку «ЗАКРЫТЬ» она переходит в нажатое состояние. Если кнопка «ЗАКРЫТЬ» нажата, то при клике на кнопку «ВЫПОЛНИТЬ» на аппаратуру выбора режима работы

проходит команда закрытия арматуры до конца, а кнопка «ЗАКРЫТЬ» переходит в отжатое состояние.

Кнопка «ОТКРЫТЬ» – кнопка команды «Открыть» отражает три возможных состояния: кнопка недоступна, кнопка отжата, кнопка нажата. Кнопка становится доступной при наличии дистанционного режима, отсутствии вывода в ремонт и отсутствии состояния «Открыто». При недоступности кнопки (клапан открыт, оборудование в ремонте или автоматический режим) – кнопка неактивна. При открытии окна управления и доступности кнопки она всегда находится в отжатом состоянии (даже если нажать кнопку, закрыть окно управления и затем снова открыть его). При клике на кнопку «ОТКРЫТЬ» она переходит в нажатое состояние. Если кнопка «ОТКРЫТЬ» нажата, при клике на кнопку «ВЫПОЛНИТЬ» подаётся команда открытия арматуры до конца, а кнопка «ОТКРЫТЬ» переходит в отжатое состояние.

Кнопка «СТОП» — кнопка без фиксации, доступна только при состоянии «ДИСТАНЦИЯ» регулирующей арматуры и отсутствии вывода в ремонт. При недоступности кнопки (оборудование в ремонте или автоматический режим) — кнопка неактивна. При нажатии на активную кнопку «СТОП» на исполнительный механизм проходит команда останова клапана.

Кнопка «ДИСТ.»/«АВТОМАТ» кнопка переключения режимов «Дистанция»/«Автомат». Надпись и цвет кнопки меняется в зависимости от текущего состояния регулирующего клапана: при состоянии «Дистанция» – кнопка зелёного цвета с надписью «ДИСТ.», при состоянии «Автомат» регулирующего клапана – кнопка зеленого цвета с надписью «АВТОМАТ». Если текущее состояние не определено, то цвет кнопки серый, выводится надпись «АВТ./ДИСТ.» При недоступности кнопки (оборудование в ремонте) – кнопка неактивна. При открытии окна управления и доступности кнопки она всегда находится в отжатом состоянии (даже если нажать кнопку, закрыть окно управления и затем снова открыть его). При клике на кнопку «ДИСТ.»/«АВТОМАТ» она переходит в нажатое состояние. Если кнопка нажата, повторный клик на кнопку делает ее отжатой. Если кнопка «ДИСТ.»/«АВТОМАТ» нажата, то при клике на кнопку «ВЫПОЛНИТЬ» посылается команда переключения режима, a кнопка «ДИСТ.»/«АВТОМАТ» переходит в отжатое состояние.

Кнопка «ВЫПОЛНИТЬ» — для подтверждения команд «Закрыть»/«Открыть» и переключения между режимами «Дист.»/«Автомат». При отсутствии выбора кнопок «Закрыть»/«Открыть», «Дист.»/«Автомат» или выводе оборудования в ремонт кнопка

неактивна. После каждого действия оператора кнопка автоматически возвращается в отжатое состояние.

Кнопка «ПОДРОБНО» используется для вызова расширенного окна управления.

Кнопка «РЕМОНТ» используется для вывода задвижки из управления при ремонте.

Кнопка «КВИТ» – кнопка квитирования мигания фона при смене состояния оборудования.

Кнопка «Тренды» – вызов окна тренда по данному параметру.

Окно ввода коэффициентов регулирования отображает текущие значения коэффициентов, а также позволяет вводить новые значения. Окно связано с соответствующими канальными операторами **IBA**, присутствующими в базе данных с кодом KKS регулирующего клапана с добавлением «_Kp», «_Ki» и «_Kd».

Сообщения в расширенном окне управления соответствуют сообщениям канального оператора CRU.

6.6 Окно управления вентилятором

Вид стандартного окна управления клапаном отсечным приведен на рисунке 40. Вызов окна осуществляется нажатием левой клавишей «мыши» на пиктограмму элемента. Окно основывается на виджете **ESGMmgmt** из библиотеки NT_tmp.

Рисунок 40

В заголовке окна выводится ККЅ-код элемента и комментарий.

В окне управления задвижкой находятся следующие элементы:

Пиктограмма – аналогичная пиктограмме на технологическом видеокадре. Для пиктограммы в стандартном окне управления используется те же принципы окрашивания в цвета и мигания, что и для пиктограммы на технологическом видеокадре.

Кнопка «ОТКЛЮЧИТЬ» – кнопка команды управления «Отключить» отражает три возможных состояния: кнопка недоступна, кнопка отжата, кнопка нажата. При недоступности кнопки (оборудование в ремонте, текущее состояние «ОТКЛЮЧЕНО») – кнопка неактивна. При открытии окна управления и доступности кнопки она всегда находится в отжатом состоянии (даже если нажать кнопку, закрыть окно управления и затем снова открыть его). При клике на кнопку «ОТКЛЮЧИТЬ» она переходит в нажатое состояние. Если кнопка нажата, повторный клик на кнопку делает ее отжатой. Клик на кнопку «ВКЛЮЧИТЬ» переводит кнопку «ОТКЛЮЧИТЬ» в отжатое состояние. Если кнопка «ОТКЛЮЧИТЬ» нажата, то при клике на кнопку «ВЫПОЛНИТЬ» посылается команда «Отключить», а кнопка «ОТКЛЮЧИТЬ» переходит в отжатое состояние.

Кнопка «ВКЛЮЧИТЬ» – кнопка команды управления «Включить» отражает три возможных состояния: кнопка недоступна, кнопка отжата, кнопка нажата. Реакция кнопки «ВКЛЮЧИТЬ» аналогична реакции кнопки «ОТКЛЮЧИТЬ». Кнопка становится недоступной при текущем состоянии «Включено» и при выводе оборудования в ремонт. Если кнопка нажата, повторный клик на кнопку делает ее отжатой. При клике на кнопку «ВКЛЮЧИТЬ» она переходит в нажатое состояние. Клик на кнопку «ОТКЛЮЧИТЬ» переводит кнопку «ВКЛЮЧИТЬ» в отжатое состояние. Если кнопка «ВКЛЮЧИТЬ» нажата, то при клике на кнопку «ВЫПОЛНИТЬ» посылается команда «Включить», а кнопка «ВКЛЮЧИТЬ» переходит в отжатое состояние.

Кнопка «ВЫПОЛНИТЬ» – используется для подтверждения выполнения команд «Отключить»/«Включить». При отсутствии выбора кнопок «Отключить»/«Включить» или выводе оборудования в ремонт кнопка неактивна. После каждого действия оператора кнопка автоматически возвращается в отжатое состояние.

Кнопка «РЕМОНТ» используется для вывода задвижки из управления при ремонте.

Кнопка «КВИТ» – кнопка квитирования мигания фона при смене состояния оборудования.

Кнопка «ПОДРОБНО» используется для вызова расширенного окна управления. Пример расширенного окна управления запорной арматурой приведён на рисунке 41.

Рисунок 41

Для управления вентилятором в комплексе ТПТС используется канальный оператор **ESGM**. Сообщения в расширенном окне управления соответствуют сообщениям канального оператора **ESGM**.

6.7 Окно управления вентилятором с регулированием

Вид стандартного окна управления вентилятором с регулированием приведен на рисунке 42. Вызов окна осуществляется нажатием левой клавишей «мыши» на пиктограмму элемента. Окно основывается на виджете **CRU_ESGMmgmt2** из библиотеки NT tmp.

В заголовке окна выводится ККЅ-код элемента и комментарий.

Элементы окна управления вентилятором с регулированием аналогичны приведенным в 6.5.

Кнопки «ВКЛЮЧИТЬ», «ВЫКЛЮЧИТЬ» принадлежат ESG функции с KKS механизма. KKS у блока CRU строится по формуле KKS+«R».

СТОП АВТО/ДИСТ

Кнопка «ВЫПОЛНИТЬ» из блока формирует телеграмму для блока ESG при нажатой кнопке «ВКЛЮЧИТЬ» или «ВЫКЛЮЧИТЬ» и для блока CRU при нажатой кнопке «АВТО/ДИСТ».

Окно ввода коэффициентов регулирования отображает текущие значения коэффициентов, а также позволяет вводить новые значения. Окно связано с

соответствующими канальными операторами **IBA**, присутствующими в базе данных с кодом KKS регулирующего клапана с добавлением «_Kp», «_Ki» и «_Kd».

Сообщения в расширенном окне управления соответствуют сообщениям канального оператора CRU.

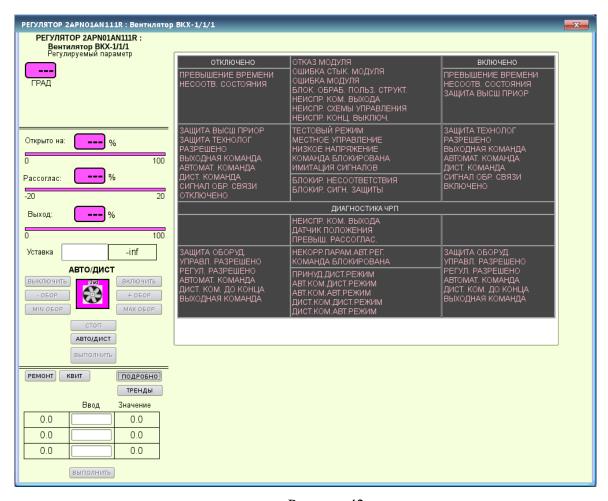


Рисунок 42

6.8 Окно управления насосом

Вид стандартного окна управления насосом приведен на рисунке 43. Вызов окна осуществляется нажатием левой клавишей «мыши» на пиктограмму элемента. Окно основывается на виджете **ESGMmgmt** из библиотеки NT_tmp.

Рисунок 43

В заголовке окна выводится ККЅ-код элемента и комментарий.

Элементы окна управления насосом аналогичны приведенным в 6.6.

Пример расширенного окна управления насосом приведён на рисунке 44.

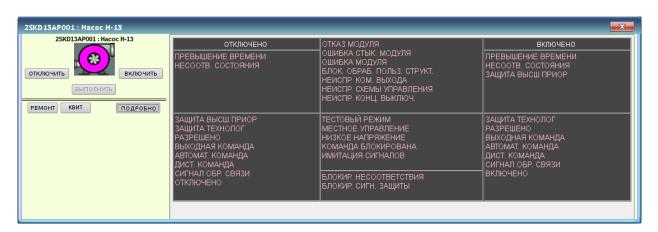


Рисунок 44

Для управления насосом в комплексе ТПТС используется канальный оператор **ESGM**. Сообщения в расширенном окне управления соответствуют сообщениям канального оператора **ESGM**.

6.9 Окно управления насосом с регулированием

Вид стандартного окна управления насосом с регулированием (с окном подробно) приведен на рисунке 45. Вызов окна осуществляется нажатием левой клавишей «мыши» на пиктограмму элемента. Окно основывается на виджете **CRU_ESGMmgmt** из библиотеки NT tmp.

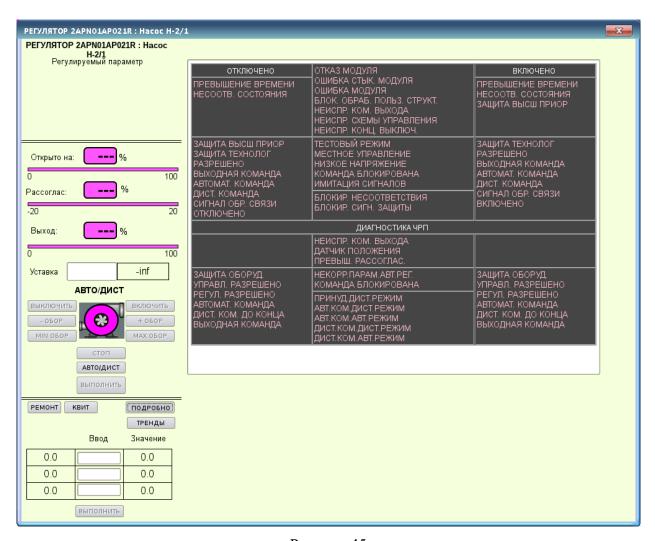


Рисунок 45

В заголовке окна выводится ККЅ-код элемента и комментарий.

Элементы окна управления насосом с регулированием аналогичны приведенным в 6.7.

Сообщения в расширенном окне управления соответствуют сообщениям канального оператора CRU.

6.10 Добавление динамического объекта на видеограмму

Основные типы динамических объектов содержатся в библиотеке NT_tmp. Для добавления нового объекта на мнемосхему нужно перетащить мышкой требуемый виджет из библиотеки NT_tmp на мнемосхему. В открывшемся окне создания объекта нужно заполнить поля «ID» и «Имя» (рисунок 46).

Создать виджет/страницу					
Т-38 Введите идентификатор и имя нового Тохt виджета/страницы.					
ID:					
Имя:					
✓ Принять Ж Отмена					
Имя:					

Рисунок 46

Далее нужно нажать на кнопку «Принять». После закрытия окна можно переместить элемент на требуемое место.

Например, для добавления нового аналога следует выбрать виджет «analog» из библиотеки NT_tmp. При размещении на мнемосхеме необходимо ввести в поле «ID» ККS-код аналогового датчика, а в поле «Name» ввести имя, которое требуется отобразить на элементе при просмотре мнемосхемы. Поле «Name» заполнять необязательно. Введенный ККS-код должен совпадать с ID соответствующего параметра из модуля EN в конфигураторе.

Для добавления нового объекта типа «Механизм», например: задвижка, насос, отсечной клапан, нужно выбрать требуемый виджет из библиотеки NT_tmp. При размещении на мнемосхеме следует ввести в поле «ID» KKS-код добавляемого механизма. Поле «Name» заполнять необязательно. Введенный KKS-код должен совпадать с ID соответствующего параметра из модуля EN в конфигураторе.

При выполнении кода, содержащегося в виджете, производится привязка всех сигналов, необходимых для индикации состояний, которые может принять виджет. Также,

производится привязка отображаемого параметра для датчиков. Вся привязка задается только кодом KKS.

Если необходимо создать модифицированный виджет на основе готовых виджетов, следует создать свою библиотеку виджетов. Далее, скопировать в нее виджет библиотеки NT_tmp, который требуется модифицировать. После этого можно редактировать скопированный виджет или его код.

7 Добавление нового канального оператора

На основании полученного описания интерфейса канальных операторов в ПП «СКАДА А-СОФТ» разрабатываются шаблоны этих операторов, с которыми работает модуль EN.

Описание добавления нового канального оператора дано на примере добавления канального оператора CRU.

7.1 Исходные данные для добавления нового канального оператора

В качестве исходных данных для шаблонов выступают таблицы 2-5, полученные от разработчиков контроллера ТПТС.

Таблица 2. Входы канального оператора

Тип	Номер	Название	Маркер	Пояснение
		сигнала		
EB	1	FHD(OS)	MBF,5993+10*n,11	Подтверждение дистанционной команды
EB	2	BH/A(OS)	MBF,5993+10*n,9	Дистанционная команда переключения
				режимов "дистанционный/автоматический
				режим"
EB	3	BHSI(OS)	MBF,5994+10*n,1	Дистанционная команда "Закрыть на шаг"
EB	4	BHOEI(OS)	MBF,5994+10*n,3	Дистанционная команда "Открыть на шаг"
EB	5	BHZUS(OS)	MBF,5994+10*n,5	Дистанционная команда "Закрыть до конца"
EB	6	BHAFOE(O	MBF,5995+10*n,7	Дистанционная команда "Открыть до конца"
		S)		
EB	7	BST(OS)	MBF,5995+10*n,16	Дистанционная команда "Стоп"

где п – номер канального оператора.

Таблица 3. Выходы канального оператора

Тип	Номер	Название	Маркер	Пояснение	
		сигнала			
AA	1	XW	MAF,599+3*n,6	Действующее рассогласование	
AA	2	YW	MAF,599+3*n,8	Положение органа регулирования	
AA	3	YA	MAF,599+3*n,7	Требуемое положение органа	
			регулирования, только в режиме		
				непрерывного регулирования	

где n – номер канального оператора.

В таблице 4 представлены сигналы, формируемые коммуникационным модулем для канального оператора.

Таблица 4.Сообщения канального оператора

заголовок	вектор		номера сигнала в векторе										
		5	6	7	8	9	10	11	12	13	14	15	16
F0	VB1							M15					
F1	VB2	XDGM		ZWHF	VO	UA	AZS	MTZH				UEBV	TE
	VB3								MUS				
Z0	VB4											A	Н
В0	VB5					OSVG	OPFG			BHAFOEV	BHZUSV	HBA	HBH
	VB6	ABA	ABH	BOE	BS	YFOE	YFS	RFOE	RFS	ABOE	ABS	SOEV	SSV
	VB7											ARAF	ARZU
	VB8	IPAV				BBL		LAR	LAB	LHR	LHB	LSR	LSB
	VB9		BGA		BGF								

В таблице 5 приведено пояснение назначений каждого сигнала.

Таблица 5. Пояснения значений сигналов

Название	Сигнал	Обозна- чение	Пояснение
Обобщённое значение ошибки	F0/VB1/11	M15	Сигнал "Неисправность блока CRU"
Рассогласование превышено	F1/VB2/5	XDGM	Рассогласование превышает допустимое значение
Неисправность средств регулирования	F1/VB2/7	ZWHF	Неисправность технических средств, при которой регулирование в автоматическом режиме невозможно
Местное управление	F1/VB2/8	VO	Дистанционная команда сформирована с местного пульта
Снижение напряжения силового питания	F1/VB2/9	UA	Напряжение силового питания исполнительного механизма ниже допустимого значения.
Неисправность силовой схемы управления исполнительным механизмом	F1/VB2/10	AZS	Защитный автомат отключен или иная неисправность силовой схемы управления
Превышение допустимой температуры двигателя	F1/VB2/11	MTZH	Температура привода исполнительного механизма (обмоток двигателя) превышает предельно допустимое значение.
Отказ датчика положения	VB3/12	MUS	Неисправность в цепях датчика положения
Неисправность командных выходов	F1/VB2/15	UEBV	Неисправность цепей выходных управляющих команд
Испытательное состояние	F1/VB2/16	TE	Испытательное состояние коммутационного устройства
Автоматический режим	Z0/VB4/15	A	Автоматический режим работы (исполнительный механизм управляется командами автоматического регулирования, сформированными из рассогласования по типовому закону, и защитными командами)
Дистанционный режим	Z0/VB4/16	Н	Дистанционный режим работы (исполнительный механизм управляется дистанционными, автоматическими, защитными командами).

Название	Сигнал	Обозна- чение	Пояснение
Дистанционная команда с обходом защитных команд	B0/VB5/9	OSVG	Сформирована дистанционная команда с обходом защитных команд
Дистанционная команда с обходом технологических разрешений	B0/VB5/10	OPFG	Сформирована дистанционная команда с обходом технологических разрешений
Дистанционная команда "Открыть до конца"	B0/VB5/13	BHAFOE V	Дистанционная команда направления "Открыто" с подхватом до формирования конечного состояния "Открыто"
Дистанционная команда "Закрыть до конца"	B0/VB5/14	BHZUSV	Дистанционная команда направления "Закрыто" с подхватом до формирования конченого состояния "Закрыто"
Дистанционная команда переключения в "Автоматический режим"	B0/VB5/15	НВА	Сформирована дистанционная команда переключения режимов работы, переключающая в автоматический режим
Дистанционная команда переключения в "Дистанционный режим"	B0/VB5/16	НВН	Сформирована дистанционная команда переключения режимов работы, переключающая в дистанционный режим
Автоматическая команда "Автоматический режим" Автоматическая команда	VB6/5 VB6/6	ABA ABH	На вход поступает автоматическая команда "Автоматический режим" На вход поступает автоматическая команда
"Дистанционный режим" Дистанционная команда	VB6/7	BOE	"Дистанционный режим" На вход поступает дистанционная или
направления "Открыто" Дистанционная команда направления "Закрыто"	VB6/8	BS	автоматическая команда направления "Открыто" На вход поступает дистанционная или автоматическая команда направления "Закрыто"
Технологическое разрешения направления "Открыто"	VB6/9	YFOE	Разрешено перемещение органа регулирования в направлении "Открыто" по дистанционным, автоматическим командам, командам автоматического регулирования
Технологическое разрешение направления "Закрыто"	VB6/10	YFS	Разрешено перемещение органа регулирования в направлении "Закрыто" по дистанционным, автоматическим командам, командам автоматического регулирования
Разрешение автоматического регулирования в направлении "Открыто"	VB6/11	RFOE	Разрешено перемещение органа регулирования в направлении "Открыто" по командам автоматического регулирования
Разрешение автоматического регулирования в направлении "Закрыто"	VB6/12	RFS	Разрешено перемещение органа регулирования в направлении "Закрыто" по командам автоматического регулирования
Автоматическая команда "Открыть"	VB6/13	ABOE	На вход поступает автоматическая команда "Открыть"
Автоматическая команда "Закрыть"	VB6/14	ABS	На вход поступает автоматическая команда "Закрыть"
Защитная команда "Открыть"	VB6/15	SOEV	На вход поступает защитная команда "Открыть"
Защитная команда "Закрыть"	VB6/16	SSV	На вход поступает защитная команда "Закрыть"
Конечное положение "Открыто"	VB7/15	ARAF	Конечное положение "Открыто". В режиме плотного открытия формируется по срабатыванию моментной муфты направления "Открыто" после срабатывания конечного выключателя "Открыто". В режиме неплотного открытия – при срабатывании конечного выключателя "Открыто"

Название	Сигнал	Обозна-	Пояснение
		чение	
Конечное положение "Закрыто"	VB7/16	ARZU	Конечное положение "Закрыто". В режиме плотного закрытия формируется по срабатыванию моментной муфты направления "Закрыто" после срабатывания конечного выключателя "Закрыто". В режиме неплотного закрытия — при срабатывании конечного выключателя "Закрыто"
Некорректное значение параметра автоматического регулирования	VB8/5	IPAV	Некорректное значение параметра автоматического регулирования
Блокировка команды	VB8/9	BBL	Команда, поступающая на вход или сформированная логикой автоматического регулирования, не может быть выполнена из-за наличия других команд, отсутствия разрешений, наличия неисправностей
Постоянное свечение лампы "Автоматический режим"	VB8/11	LAR	Признак постоянного свечения лампы "Автоматический режим"
Мигание лампы "Автоматический режим"	VB8/12	LAB	Признак мигания (2 Гц) лампы "Автоматический режим"
Постоянное свечение лампы "Дистанционный режим"	VB8/13	LHR	Признак постоянного свечения лампы "Дистанционный режим"
Мигание лампы "Дистанционный режим"	VB8/14	LHB	Признак мигания (2 Гц) лампы "Дистанционный режим"
Постоянное свечение лампы "Неисправность"	VB8/15	LSR	Признак постоянного свечения лампы "Неисправность"
Мигание лампы "Неисправность"	VB8/16	LSB	Признак мигания (2 Гц) лампы "Неисправность"
		BGA	Признак неработоспособности модуля
		BGF	Признак неисправности модуля

7.2 Порядок действий при добавлении нового канального оператора

7.2.1 Добавление нового канального оператора в шаблон параметров SYSTEM_NT

Для добавления нового канального оператора в шаблон параметров **SYSTEM_NT** в системном конфигураторе необходимо выполнить следующие действия:

1) Создать новый элемент в Библиотеке шаблонов параметров SYSTEM_NT (рисунки 47 - 48).

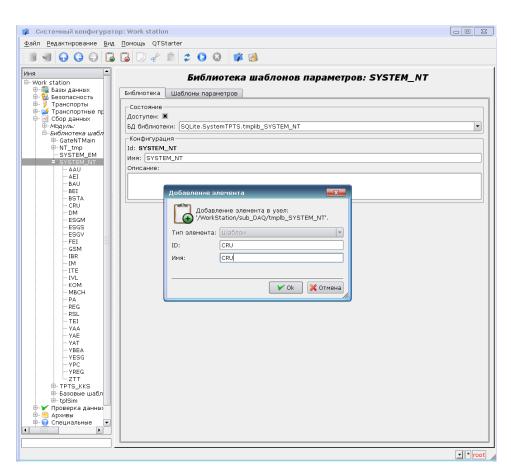


Рисунок 47

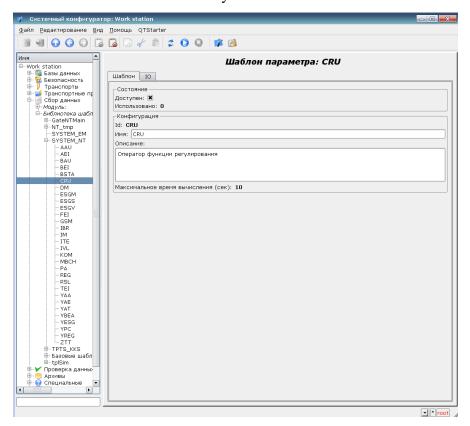


Рисунок 48

Войти на вкладку IO и в соответствии с таблицами 2-5, описать входы и выходы канального оператора (рисунок 49).

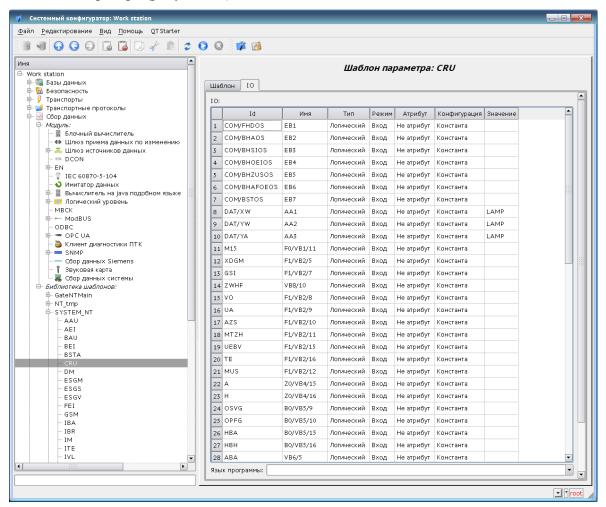


Рисунок 49

7.2.2 Добавление нового канального оператора в библиотеку шаблонов проекта NT tmp

В редакторе пользовательского интерфейса в библиотеку шаблонов **NT_tmp** добавляем новый элемент и описываем его. На рисунке 50 приведен шаблон параметра CRUmgmt.

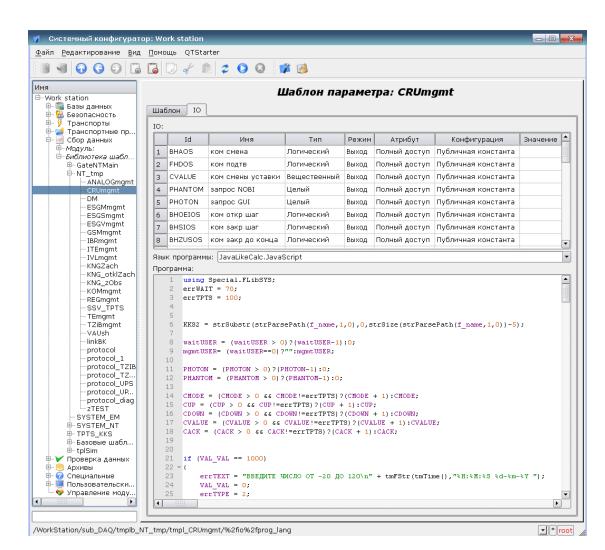


Рисунок 50

8 Библиотека элементов для АСУТП АЭС

8.1 Изображение аналоговых технологических параметров

Значения параметров изображаются при помощи специализированных пиктограмм. Вид пиктограмм отображения аналогового параметра представлен на рисунке 51. Они отображают:

- текущие значения параметров;
- наличие сигнализации о превышении уставок;
- наличие сигнализации о неисправностях измерительного канала.

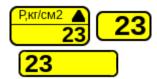


Рисунок 51

Текущие значения параметра выводятся в виде чисел с плавающей запятой. Формат чисел определяется при проектировании.

При отсутствии данных цвет фона пиктограммы малиновый, на котором выводится значение «----». Если данные имеются, то цвет элементов пиктограммы определяется в зависимости от наличия сигнализации, связанной с параметрами по правилам, приведенным в таблице 6.

Таблица 6

Состояние	Цвет фона, динамика	Пример
Показания датчика в норме	Зеленый	Р,кг/см2 23 23
Сигнал недостоверен	Малиновый	P, KT/CM2 ▲ 11
Нарушение границ предупредительной сигнализации	Желтый, контур элемента мигает с частотой 2 Гц	P,KT/CM2 ▲ 23 23 23 23

Состояние	Цвет фона, динамика	Пример
Нарушение границ аварийной сигнализации	Красный, контур элемента мигает с частотой 2 Гц	P,Kr/cм2 ▼ 23 23
Нарушение границ диапазона измерений	Белый, контур элемента мигает с частотой 2 Гц	P,Kr/CM2 ▼ 23 23 23
Квитированы все сигналы	Контур элемента статичен	P,Kr/CM2 ▼ 23 23 23
Неисправность	Красный, контур элемента мигает с частотой 2 Гц	P,Kr/CM2 23 23

В случае, если:

- вся сигнализация квитирована контур элемента статичен (0 Гц);
- при наличии отменённой, но не квитированной сигнализации, контур элемента мигает с частотой $0.5~\Gamma$ ц;
- если имеется неквитированный неотменённый сигнал темп мигания контура
 элемента 2 Гц.

Пример отображения аналогового параметра в виде гистограммы приведен на рисунке 52.

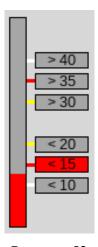


Рисунок 52

Слева от шкалы гистограммы находятся блоки, отвечающие за отображение срабатывания дискретных уставок (верхних/нижних аварийных/предупредительных /физических). Внутри блоков находятся значения уставок. Блоки соединены со шкалой линиями, цвет которых зависит от типа уставки:

- аварийная уставка красная линия,
- предупредительная уставка жёлтая линия,
- физическая уставка- белая линия.

Цвет фона блока, при срабатывании уставки, меняется в зависимости от типа уставки, соответствующей блоку: аварийная — красный, предупредительная — жёлтый, физическая — белый. Шкала окрашивается в цвет сработавшей уставки.

При наведении курсора «мыши» на пиктограмму аналогового параметра отобразится ККS-код (идентификатор) этого параметра (рисунок 53).

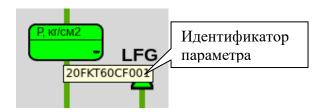


Рисунок 53

Для получения справочной информации по аналоговому параметру необходимо:

- выбрать пиктограмму аналогового параметра на мнемосхеме;
- нажатием правой клавиши «мыши» на этом параметре вызвать контекстное меню и выбрать в нем пункт «Инфо» (рисунок 54). Появится окно с информацией по уставкам для данного аналогового параметра и представление этого параметра в виде гистограммы (рисунок 55).

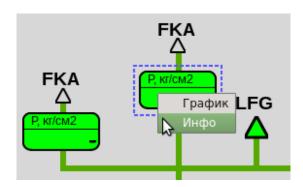


Рисунок 54

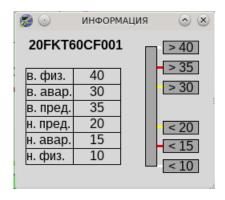


Рисунок 55

При выборе пункта меню «График» (рисунок 54) появится представление этого параметра в окне тренда (описание тренда см. 8.13). Если данное окно уже существует, то параметр добавится в это окно.

8.2 Изображение насосов

Насос изображается в виде пиктограммы, которая состоит из замкнутого контура и фигуры внутри.

Пример пиктограммы насоса для отображения на мнемосхеме изображен на рисунке56.

Рисунок 56

Для управления насосом в комплексе ТПТС используется канальный оператор **EM**.

Принципы окрашивания в цвета, мигания (с частотой 2 Гц) и мерцания (с частотой 8 Гц) пиктограммы насоса приведены в таблице 7.

Таблица 7

Состояние	Цвет элемента	Цвет фона, динамика	Пример	Условия состояния (для ТПТС)
Включено	Желтый	-		LER = 1 или ARE = 1 при недостоверности LER
Неисправность при включении	Желтый	Красный контур элемента мигает		LEB = 1
Включение	Желтый	Мерцает		LEF= 1

Состояние	Цвет элемента	Цвет фона, динамика	Пример	Условия состояния (для ТПТС)
Отключено	Зеленый	-		LAR = 1 или ARA = 1 при недостоверной LAR
Неисправность при отключении	Зеленый	Красный контур элемента мигает		LAB = 1
Отключение	Зеленый	Мерцает		LAF = 1
СН управления	-	Красный контур элемента мигает		LSB = 1
СН управления квитированный	-	Красный контур элемента		LSR = 1
Недостоверность	-	Малиновый треугольник внутри пиктограммы		Отсутствие какого-либо сигнала, отвечающего за формирование световой сигнализации
Неопределённое	Серый	-		Отсутствие какого-либо сигнала, отвечающего за формирование состояния отключено/выключено

В случае, если:

- вся сигнализация квитирована контур элемента статичен (0 Гц);
- при наличии отменённой, но не квитированной сигнализации, контур элемента мигает с частотой $0.5~\Gamma$ ц;
- если имеется неквитированный неотменённый сигнал темп мигания контура элемента 2 Γ ц.

При наведении курсора «мыши» на пиктограмму насоса отобразится ККS-код (идентификатор) насоса.

8.2.1 Управление насосом

Вызов окна управления насосом осуществляется двойным щелчком левой клавишей «мыши» по пиктограмме насоса. Вид стандартного окна управления насосом приведен на рисунке 57. На данном примере насос находится в состоянии «ВКЛЮЧЕНО» и нажата кнопка «ОТКЛЮЧИТЬ».

Рисунок 57

В верхней части окна управления выводится ККS-код элемента, в данном примере это - ККSP.

В окне управления насосом находятся следующие элементы:

Пиктограмма – аналогичная пиктограмме на технологическом видеокадре с указанием состояния, в котором данное оборудование находится (согласно таблице 7).

Кнопка «ОТКЛЮЧИТЬ» – кнопка команды управления остановом отражает три возможных состояния: кнопка недоступна, кнопка отжата, кнопка нажата. При недоступности кнопки (оборудование в ремонте, текущее состояние «ОТКЛЮЧЕНО») – кнопка неактивна. При открытии окна управления и доступности кнопки она всегда находится в отжатом состоянии (даже если нажать кнопку, закрыть окно управления и затем снова открыть его). При щелчке левой клавишей «мыши» на кнопку «ОТКЛЮЧИТЬ» она переходит в нажатое состояние. Если кнопка нажата, повторный клик на кнопку делает ее отжатой. Клик на кнопку «ВКЛЮЧИТЬ» переводит кнопку «ОТКЛЮЧИТЬ» в отжатое состояние. Если кнопка «ОТКЛЮЧИТЬ» нажата, то при клике на кнопку «ВЫПОЛНИТЬ» посылается команда «Отключить», а кнопка «ОТКЛЮЧИТЬ» переходит в отжатое состояние.

Кнопка «ВКЛЮЧИТЬ» — кнопка команды управления пуском отражает три возможных состояния: кнопка недоступна, кнопка отжата, кнопка нажата. Реакция кнопки «ВКЛЮЧИТЬ» аналогична реакции кнопки «ОТКЛЮЧИТЬ». Кнопка становится недоступной при текущем состоянии «ВКЛЮЧЕНО» и при выводе оборудования в ремонт. Если кнопка нажата, повторный клик на кнопку делает ее отжатой. При клике на кнопку «ВКЛЮЧИТЬ» она переходит в нажатое состояние. Клик на кнопку

«ОТКЛЮЧИТЬ» переводит кнопку «ВКЛЮЧИТЬ» в отжатое состояние. Если кнопка «ВКЛЮЧИТЬ» нажата, то при клике на кнопку «ВЫПОЛНИТЬ» посылается команда «Включить», а кнопка «ВКЛЮЧИТЬ» переходит в отжатое состояние.

Кнопка «ВЫПОЛНИТЬ» – для подтверждения команд «Включить»/«Отключить». При отсутствии выбора кнопок «Включить»/«Отключить» или выводе оборудования в ремонт кнопка неактивна. После каждого действия оператора кнопка автоматически возвращается в отжатое состояние.

Кнопка «ПОДРОБНО» – используется для вызова расширенного окна управления.

Кнопка «ДОКУМЕНТАЦИЯ» – кнопка доступа к эксплуатационной документации по оборудованию.

ТОТКЛЮЧЕНО

ВЫПОЛНИТЬ

ВЕХПОЧЕНО

ВЕССОТВЕНИИИ

ВЕСПОВНОЕНИИ

ВЕСООТВЕССТИНИЯ

ВЕСООТВЕНИИИ

ВЕСООТВЕНИИ

ВЕСООТВЕНИИИ

ВЕСООТВЕНИИИ

ВЕСООТВЕНИИИ

ВЕСООТВЕНИИИ

ВЕСООТВЕНИИИ

ВЕСООТВЕНИИИ

ВЕСООТВЕНИИИ

ВЕСООТВЕНИИ

ВЕСООТВЕНИИИ

Вид подробного окна управления насосом приведён на рисунке 58.

Рисунок 58

Перечень сигналов, отвечающих за индикацию соответствующих строк и правила цветового кодирования приведены в таблице 8.

Таблица 8

Направление	Сигнал в окне управления	Обозначение в ТПТС	Цвет активного сообщения в окне управления
ОТКЛЮЧИТЬ	ПРЕВЫШЕНИЕ ВРЕМЕНИ	LZAV	красный
	НЕСООТВ. СОСТОЯНИЯ	EFAEV	красный
	ИНД. НАРУШ. В ОТКЛ	LAB	красный
	ПРЕВЫШЕНИЕ ВРЕМЕНИ	LZAV	красный
	АВТОМАТ. КОМАНДА	ABA	зеленый

Направление	Сигнал в окне управления	Обозначение в ТПТС	Цвет активног сообщения в окн управления
	ВЫХОДНАЯ КОМАНДА	ALA	зеленый
	ОТКЛЮЧЕНО	ARA	зеленый
	ДИСТ. КОМАНДА	HBA	зеленый
	ПЕРЕКЛ. В ОТКЛЮЧЕНО	LAF	зеленый
	ИНД. ОТКЛЮЧЕНО	LAR	зеленый
ОТКЛЮЧИТЬ	РАЗРЕШЕНО	PFA	зеленый
	СИГНАЛ ОБР. СВЯЗИ	RMA	зеленый
	ЗАЩИТА 1	S1A	зеленый
	ЗАЩИТА	S2A	зеленый
ВКЛЮЧИТЬ	НЕСООТВ. СОСТОЯНИЯ	EFEAM	красный
	НЕСООТВ. СОСТОЯНИЯ	EFEAV	красный
	ИНД. НАРУШ. В ВКЛ	LEB	красный
	ПРЕВЫШЕНИЕ ВРЕМЕНИ	LZEV	красный
	ЗАЩИТА 1 СРАБОТАЛА	S1AV	красный
	АВТОМАТ. КОМАНДА	ABE	зеленый
	ВЫХОДНАЯ КОМАНДА	ALE	зеленый
	ВКЛЮЧЕНО	ARE	зеленый
	ДИСТ. КОМАНДА	HBE	зеленый
	ПЕРЕКЛ. В ВКЛЮЧЕНО	LEF	зеленый
	инд. включено	LER	зеленый
	РАЗРЕШЕНО	PFE	зеленый
	СИГНАЛ ОБР. СВЯЗИ	RME	зеленый
	ЗАЩИТА	S2E	зеленый
ОБЩИЕ СИГНАЛЫ	НЕИСПР. СХ. УПРАВЛЕНИЯ	AZS	красный
	ОШИБКА МОДУЛЯ	BGF	красный
	ОШИБКА СТЫК. МОДУЛЯ	ESF	красный
	ПОДАВЛЕНИЕ ПРЕРЫВАНИЙ	FUAS	красный
	ИНД. НЕИСПРАВНОСТЬ	LSB	красный
	ИНД. НЕИСПРАВНОСТЬ 2	LSR	красный
	НЕИСПРАВНОСТЬ АПП. СРЕДСТВ	M16	красный
	ОБОБЩЕННАЯ НЕИСПРАВНОСТЬ	OS	красный
	НЕИСПР. КОНЦ. ВЫКЛЮЧ.	RMF1	красный
	НЕИСПР. КОМ. ВЫХОДА	UEBA	красный
	КОМАНДА БЛОКИРОВАНА	BBL	красный
	ОТКАЗ МОДУЛЯ	BGAU	красный
	НЕПР. ТИП МОДУЛЯ	BGT	красный

Направление	Сигнал в окне управления	Обозначение в ТПТС	Цвет активного сообщения в окне управления
	БЛОК. ОБРАБ. ПОЛЬЗ. СТР.	BSP	красный
	ИМИТАЦИЯ СИГНАЛОВ АН.	M6	синий
	ИМИТАЦИЯ СИГНАЛОВ Д.	M8	синий
	РЕЖИМ УПР. НЕДОСТ.	NV	красный
	ТЕСТОВЫЙ РЕЖИМ	TE	красный
	низкое напряжение	UAV	красный
	МЕСТНОЕ УПРАВЛЕНИЕ	VOV	красный
	БЛОКИР. НЕСООТВЕТСТВИЯ	UEF	зеленый
	БЛОКИР. СИГН. ЗАЩИТЫ 1	UEFS	зеленый

При наведении указателя «мыши» на сигнал в NOBI-протоколе появляется всплывающее окно с описанием сигнала. Пример всплывающего окна приведён на рисунке 59.

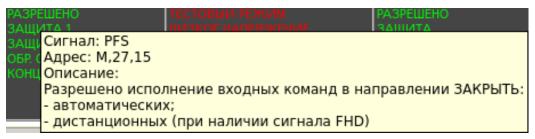


Рисунок 59

8.3 Пиктограмма вентагрегата

Пример пиктограммы вентагрегата для отображения на мнемосхемах приведен на рисунке 60.

Рисунок 60

Для управления вентагрегатом в комплексе ТПТС используется канальный оператор **EM**.

Принципы окрашивания в цвета, мигания (с частотой 2 Гц) и мерцания (с частотой 8 Гц) пиктограммы вентагрегата приведены в таблице 9.

Таблица 9

Состояние	Цвет элемента	Цвет фона, динамика	Пример	Условия состояния(для ТПТС)
Включено	Желтый	-		LER = 1 или ARE = 1 при недостоверной LER
Неисправность при включении	Желтый	Красный контур элемента мигает		LEB = 1
Включение	Желтый	Мерцает		LEF = 1
Отключено	Зеленый	-		LAR = 1 или ARA = 1 при недостоверной LAR
Неисправность при отключении	Зеленый	Красный контур элемента мигает		LAB = 1
Отключение	Зеленый	Мерцает		LAF = 1
СН управления	-	Красный контур элемента мигает		LSB = 1
СН управления квитированный	-	Красный контур элемента		LSR = 1
Недостоверность	-	Малиновый круг внутри пиктограммы		Отсутствие в СВУ какого-либо сигнала, отвечающего за формирование световой сигнализации
Неопределённое	Серый	-		Отсутствие какого-либо сигнала, отвечающего за формирование состояния отключено/выключено
Направление потока		Угловая часть со стороны потока		

В случае, если:

- вся сигнализация квитирована контур элемента статичен (0 Гц);
- при наличии отменённой, но не квитированной сигнализации, контур элемента мигает с частотой 0.5 Гц;

если имеется неквитированный неотменённый сигнал - темп мигания контура
 элемента 2 Гц.

8.3.1 Управление вентагрегатом

Вид стандартного окна управления вентагрегатом приведен на рисунке 61. Вызов этого окна осуществляется двойным нажатием левой клавишей «мыши» на пиктограмму элемента. На данном примере вентагрегат находится в состоянии «ВКЛЮЧЕНО» и нажата кнопка «ОТКЛЮЧИТЬ».

Рисунок 61

Именем окна управления является KKS-код вентагрегата.

В окне управления вентагрегатом находятся следующие элементы:

Пиктограмма — аналогичная пиктограмме на технологическом видеокадре. Для пиктограммы в стандартном окне управления используется те же принципы окрашивания в цвета и мигания, что и для пиктограммы на технологическом видеокадре.

Кнопка «ОТКЛЮЧИТЬ» — рисунок кнопки команды управления остановом отражает три возможных состояния: кнопка недоступна, кнопка отжата, кнопка нажата. При недоступности кнопки (оборудование в ремонте, текущее состояние «ОТКЛЮЧЕНО») — кнопка неактивна. При открытии окна управления и доступности кнопки она всегда находится в отжатом состоянии (даже если нажать кнопку, закрыть окно управления и затем снова открыть его). При клике на кнопку «ОТКЛЮЧИТЬ» она переходит в нажатое состояние. Если кнопка нажата, повторный клик на кнопку делает ее отжатой. Клик на кнопку «ВКЛЮЧИТЬ» переводит кнопку «ОТКЛЮЧИТЬ» в отжатое состояние. Если кнопка «ОТКЛЮЧИТЬ» нажата, то при клике на кнопку «ВЫПОЛНИТЬ»

посылается команда «Отключить», а кнопка «ОТКЛЮЧИТЬ» переходит в отжатое состояние.

Кнопка «ВКЛЮЧИТЬ» – рисунок кнопки команды управления пуском отражает три возможных состояния: кнопка недоступна, кнопка отжата, кнопка нажата. Реакция кнопки «ВКЛЮЧИТЬ» аналогична реакции кнопки «ОТКЛЮЧИТЬ». Кнопка становится недоступной при текущем состоянии «ВКЛЮЧЕНО» и при выводе оборудования в ремонт. Если кнопка нажата, повторный клик на кнопку делает ее отжатой. При клике на кнопку «ВКЛЮЧИТЬ» она переходит в нажатое состояние. Клик на кнопку «ОТКЛЮЧИТЬ» переводит кнопку «ВКЛЮЧИТЬ» в отжатое состояние. Если кнопка «ВКЛЮЧИТЬ» нажата, то при клике на кнопку «ВЫПОЛНИТЬ» посылается команда «Включить», а кнопка «ВКЛЮЧИТЬ» переходит в отжатое состояние.

Кнопка «ВЫПОЛНИТЬ» используется для подтверждения команд «Включить»/«Отключить». При отсутствии выбора кнопок «Включить»/«Отключить» или выводе оборудования в ремонт кнопка неактивна. После каждого действия оператора кнопка автоматически возвращается в отжатое состояние.

Кнопка «ПОДРОБНО» используется для вызова расширенного окна управления.

Кнопка «ДОКУМЕНТАЦИЯ» – кнопка доступа к эксплуатационной документации по оборудованию.

ТОДРОБНО

ДОКУМЕНТАЦИЯ

ДОКУ

Вид подробного окна управления вентилятором приведён на рисунке 62.

Рисунок 62

Перечень сигналов, отвечающих за индикацию соответствующих строк и правила цветового кодирования приведены в таблице 10.

Таблица 10

Направление	Сигнал в окне управления	Обозначение в ТПТС	Цвет активного сообщения в окно управления	
	ПРЕВЫШЕНИЕ ВРЕМЕНИ	LZAV	красный	
	НЕСООТВ. СОСТОЯНИЯ	EFAEV	красный	
	ИНД. НАРУШ. В ОТКЛ	LAB	красный	
	ПРЕВЫШЕНИЕ ВРЕМЕНИ	LZAV	красный	
	АВТОМАТ. КОМАНДА	ABA	зеленый	
	ВЫХОДНАЯ КОМАНДА	ALA	зеленый	
	ОТКЛЮЧЕНО	ARA	зеленый	
ОТКЛЮЧИТЬ	ДИСТ. КОМАНДА	HBA	зеленый	
	ПЕРЕКЛ. В ОТКЛЮЧЕНО	LAF	зеленый	
	ИНД. ОТКЛЮЧЕНО	LAR	зеленый	
	РАЗРЕШЕНО	PFA	зеленый	
	СИГНАЛ ОБР. СВЯЗИ	RMA	зеленый	
	ЗАЩИТА 1	S1A	зеленый	
	ЗАЩИТА	S2A	зеленый	
	НЕСООТВ. СОСТОЯНИЯ	EFEAM	красный	
	НЕСООТВ. СОСТОЯНИЯ	EFEAV	красный	
	ИНД. НАРУШ. В ВКЛ	LEB	красный	
включить	ПРЕВЫШЕНИЕ ВРЕМЕНИ	LZEV	красный	
	ЗАЩИТА 1 СРАБОТАЛА	S1AV	красный	
	АВТОМАТ. КОМАНДА	ABE	зеленый	
	ВЫХОДНАЯ КОМАНДА	ALE	зеленый	
	ВКЛЮЧЕНО	ARE	зеленый	
	ДИСТ. КОМАНДА	HBE	зеленый	
	ПЕРЕКЛ. В ВКЛЮЧЕНО	LEF	зеленый	
ВКЛЮЧИТЬ	ИНД. ВКЛЮЧЕНО	LER	зеленый	
	РАЗРЕШЕНО	PFE	зеленый	
	СИГНАЛ ОБР. СВЯЗИ	RME	зеленый	
	ЗАЩИТА	S2E	зеленый	
	НЕИСПР. СХ. УПРАВЛЕНИЯ	AZS	красный	
ОБЩИЕ СИГНАЛЫ	ОШИБКА МОДУЛЯ	BGF	красный	
	ОШИБКА СТЫК. МОДУЛЯ	ESF	красный	
	ПОДАВЛЕНИЕ			
	ПРЕРЫВАНИЙ	FUAS	красный	
	ИНД. НЕИСПРАВНОСТЬ	LSB	красный	
	ИНД. НЕИСПРАВНОСТЬ 2	LSR	красный	

Направление	Сигнал в окне управления	Обозначение в ТПТС	Цвет активного сообщения в окне управления	
	НЕИСПРАВНОСТЬ АПП.			
	СРЕДСТВ	M16	красный	
	ОБОБЩЕННАЯ			
	НЕИСПРАВНОСТЬ	OS	красный	
	НЕИСПР. КОНЦ. ВЫКЛЮЧ.	RMF1	красный	
	НЕИСПР. КОМ. ВЫХОДА	UEBA	красный	
	КОМАНДА БЛОКИРОВАНА	BBL	красный	
ОБЩИЕ СИГНАЛЫ	ОТКАЗ МОДУЛЯ	BGAU	красный	
	НЕПР. ТИП МОДУЛЯ	BGT	красный	
	БЛОК. ОБРАБ. ПОЛЬЗ. СТР.	BSP	красный	
	ИМИТАЦИЯ СИГНАЛОВ АН.	M6	синий	
	ИМИТАЦИЯ СИГНАЛОВ Д.	M8	синий	
	РЕЖИМ УПР. НЕДОСТ.	NV	красный	
	ТЕСТОВЫЙ РЕЖИМ	TE	красный	
	НИЗКОЕ НАПРЯЖЕНИЕ	UAV	красный	
	МЕСТНОЕ УПРАВЛЕНИЕ	VOV	красный	
	БЛОКИР.			
	НЕСООТВЕТСТВИЯ	UEF	зеленый	
	БЛОКИР. СИГН. ЗАЩИТЫ 1	UEFS	зеленый	

При наведении указателя «мыши» на сигнал в NOBI-протоколе появляется всплывающее окно с описанием сигнала, пример которого приведён на рисунке 59.

8.4 Изображение положения запорной арматуры

8.4.1 Изображение положения запорной арматуры

Запорная арматура отображается в виде пиктограммы, которая включает в себя две части: секцию индикации состояния (состоит из пары симметрично расположенных треугольников) и секция индикации неисправностей (состоит из фигуры, соединенной с центром симметрии секции индикации состояния). В приведенном примере (рисунок 63) секция индикации состояния находится снизу, секция индикации неисправностей сверху.

Рисунок 63

Форма и цвет секции индикации состояния и наличие мерцания контура элемента вокруг пиктограммы зависит от состояния арматуры и определяется по правилам, представленным в таблице 11.

Для управления запорной арматурой в комплексе ТПТС используется канальный оператор **ES**.

Принципы окрашивания в цвета, мигания (с частотой 2 Гц) и мерцания (с частотой 8 Гц) пиктограммы запорной арматуры приведены в таблице 11.

Таблица 11

Состояние	Цвет элемента	Цвет фона, динамика	Пример	Условия состояния (для ТПТС)
Открыт	Желтый	-	8	LAFR = 1 или ARAF = 1 при недостоверной LAFR
Неисправность в направлении открытия	Желтый	Красный контур мигает		LAFR = 1
Ход в направлении открытия	Желтый	Мерцает		LAFF = 1
Закрыт	Зеленый	-	8	LZUR = 1 или ARZU = 1 при недостоверной LZUR
Неисправность в направлении закрытия	Зеленый	Красный контур мигает		LZUB = 1
Ход в направлении закрытия	Зеленый	Мерцает		LZUF = 1
Промежуточное	Серый	-		(LAFF, LAFR, LAFB, LZUF, LZUR,LZUB) = 0 и (ARAF, ARZU) = 0
СН управления	-	Красный контур мигает	0	LSB = 1
СН управления квитированный	-	Красный контур		LSR = 1
Недостоверность	-	Малиновый фон круга	No.	Отсутствие какого-либо сигнала, отвечающего за формирование световой сигнализации
Направление потока	-	Серый треугольник со стороны потока		

В случае, если:

- вся сигнализация квитирована контур элемента статичен (0 Гц);
- при наличии отменённой, но не квитированной сигнализации, контур элемента
 мигает с частотой 0.5 Гц;
- если имеется неквитированный неотменённый сигнал темп мигания контура
 элемента 2 Гц.

При наведении курсора «мыши» на пиктограмму запорной арматуры отобразится ее ККS-код.

8.4.2 Управление запорной арматурой

Вид стандартного окна управления запорной арматурой приведен на рисунке64. Вызов окна осуществляется двойным нажатием левой клавишей «мыши» на пиктограмму элемента. На данном примере запорная арматура находится в состоянии «ЗАКРЫТО» и нажата кнопка «ОТКРЫТЬ».

Рисунок 64

Именем окна управления является KKS-код запорной арматуры.

В окне управления запорной арматурой находятся следующие элементы:

Пиктограмма — аналогичная пиктограмме на технологическом видеокадре. Для пиктограммы в стандартном окне управления используется те же принципы окрашивания в цвета и мигания, что и для пиктограммы на технологическом видеокадре.

Кнопка «ЗАКРЫТЬ» — кнопка команды управления «Закрыть» отражает три возможных состояния: кнопка недоступна, кнопка отжата, кнопка нажата. При недоступности кнопки (оборудование в ремонте, текущее состояние «ЗАКРЫТО») — кнопка неактивна. При открытии окна управления и доступности кнопки она всегда

находится в отжатом состоянии (даже если нажать кнопку, закрыть окно управления и затем снова открыть его). При клике на кнопку «ЗАКРЫТЬ» она переходит в нажатое состояние. Если кнопка нажата, повторный клик на кнопку делает ее отжатой. Клик на любую из кнопок «ОТКРЫТЬ» или «СТОП» переводит кнопку «ЗАКРЫТЬ» в отжатое состояние. Если кнопка «ЗАКРЫТЬ» нажата, то при клике на кнопку «ВЫПОЛНИТЬ» посылается команда «Закрыть», а кнопка «ЗАКРЫТЬ» переходит в отжатое состояние.

Кнопка «ОТКРЫТЬ» — кнопка команды уравления «Открыть» отражает три возможных состояния: кнопка недоступна, кнопка отжата, кнопка нажата. Реакция кнопки «ОТКРЫТЬ» аналогична реакции кнопки «ЗАКРЫТЬ». Кнопка становится недоступной при текущем состоянии «ОТКРЫТО» и при выводе оборудования в ремонт. Если кнопка нажата, повторный клик на кнопку делает ее отжатой. При клике на кнопку «ОТКРЫТЬ» она переходит в нажатое состояние. Клик на любую из кнопок «ЗАКРЫТЬ» или «СТОП» переводит кнопку «ОТКРЫТЬ» в отжатое состояние. Если кнопка «ОТКРЫТЬ» нажата, то при клике на кнопку «ВЫПОЛНИТЬ» посылается команда «Открыть», а кнопка «ОТКРЫТЬ» переходит в отжатое состояние.

Кнопка «СТОП» - кнопка команды «Стоп» отражает три возможных состояния: кнопка недоступна, кнопка отжата, кнопка нажата. При недоступности кнопки (оборудование в ремонте) — кнопка не активная. После каждого действия оператора кнопка автоматически возвращается в отжатое состояние. При клике на кнопку «СТОП» посылается команда «Стоп», которая не требует подтверждения кликом на кнопку «ВЫПОЛНИТЬ».

Кнопка «ВЫПОЛНИТЬ» — используется для подтверждения выполнения команд «Закрыть»/«Открыть». При отсутствии выбора кнопок «Закрыть»/«Открыть» или выводе оборудования в ремонт кнопка неактивна. После каждого действия оператора кнопка автоматически возвращается в отжатое состояние.

Кнопка «ПОДРОБНО» используется для вызова расширенного окна управления.

Кнопка «ДОКУМЕНТАЦИЯ» – кнопка доступа к эксплуатационной документации по оборудованию.

Пример подробного окна управления запорной арматурой приведён на рисунке 65.

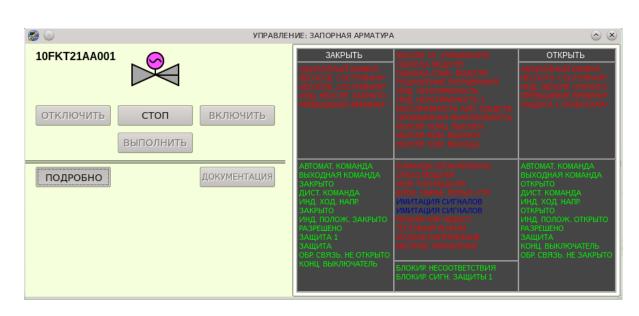


Рисунок 65

Перечень сигналов, отвечающих за индикацию соответствующих строк и правила цветового кодирования приведены в таблице 12.

Таблица 12

Направление	Сигнал в окне управления	Обозначение в ТПТС	Цвет активного сообщения в окне управления
	DEZUS	АВАРИЙНЫЙ МОМЕНТ	красный
	EFAZV	НЕСООТВ. СОСТОЯНИЯ	красный
	EFZAV	НЕСООТВ. СОСТОЯНИЯ	красный
	LZUB	ИНД. НЕИСПР. ЗАКРЫТО	красный
ЗАКРЫТЬ	LZZUV	ПРЕВЫШЕНИЕ ВРЕМЕНИ	красный
	ABS	АВТОМАТ. КОМАНДА	зеленый
	ALS	ВЫХОДНАЯ КОМАНДА	зеленый
	ARZU	ЗАКРЫТО	зеленый
	HBS	ДИСТ. КОМАНДА	зеленый
	LZUF	ИНД. ХОД. НАПР. ЗАКРЫТО	зеленый
	LZUR	ИНД. ПОЛОЖ. ЗАКРЫТО	зеленый
ОТКРЫТЬ	PFS	РАЗРЕШЕНО	зеленый
OTREBITE	S1S	ЗАЩИТА 1	зеленый
	S2S	ЗАЩИТА	зеленый
	WENAF	ОБР. СВЯЗЬ. НЕ ОТКРЫТО	зеленый
	WEZU	КОНЦ. ВЫКЛЮЧАТЕЛЬ	зеленый

Направление	Сигнал в окне управления	Обозначение в ТПТС	Цвет активного сообщения в окне управления
	DEAFS	АВАРИЙНЫЙ МОМЕНТ	красный
	EFAZM	НЕСООТВ. СОСТОЯНИЯ	красный
	LAFB	ИНД. НЕИСПР. ОТКРЫТО	красный
	DEAFS	АВАРИЙНЫЙ МОМЕНТ	красный
	EFAZM	НЕСООТВ. СОСТОЯНИЯ	красный
	LAFB	ИНД. НЕИСПР. ОТКРЫТО	красный
	LZAFV	ПРЕВЫШЕНИЕ ВРЕМЕНИ	красный
	S1SV	ЗАЩИТА 1 СРАБОТАЛА	красный
ОТКРЫТЬ	ABOE	АВТОМАТ. КОМАНДА	зеленый
	ALOE	ВЫХОДНАЯ КОМАНДА	зеленый
	ARAF	ОТКРЫТО	зеленый
	НВОЕ	ДИСТ. КОМАНДА	зеленый
	LAFF	ИНД. ХОД. НАПР. ОТКРЫТО	зеленый
	LAFR	ИНД. ПОЛОЖ. ОТКРЫТО	зеленый
	PFOE	РАЗРЕШЕНО	зеленый
	S2OE	ЗАЩИТА	зеленый
	WEAF	КОНЦ. ВЫКЛЮЧАТЕЛЬ	зеленый
	WENZU	ОБР. СВЯЗЬ. НЕ ЗАКРЫТО	зеленый
	AZS	НЕИСПР. СХ. УПРАВЛЕНИЯ	красный
	BGF	ОШИБКА МОДУЛЯ	красный
	ESF	ОШИБКА СТЫК. МОДУЛЯ	красный
	FUAS	ПОДАВЛЕНИЕ ПРЕРЫВАНИЙ	красный
	LSB	ИНД. НЕИСПРАВНОСТЬ	красный
	LSR	ИНД. НЕИСПРАВНОСТЬ 2	красный
	M16	НЕИСПРАВНОСТЬ АПП. СРЕДСТВ	красный
	OS	ОБОБЩЕННАЯ НЕИСПРАВНОСТЬ	красный
ОБЩИЕ СИГНАЛЫ	RMF1	НЕИСПР. КОНЦ. ВЫКЛЮЧ.	красный
	RMF2	НЕИСПР. МОМ. ВЫКЛЮЧ.	красный
	UEBA	НЕИСПР. КОМ. ВЫХОДА	красный
	BBL	КОМАНДА БЛОКИРОВАНА	красный
	BGAU	ОТКАЗ МОДУЛЯ	красный
	BGT	НЕПР. ТИП МОДУЛЯ	красный
	BSP	БЛОК. ОБРАБ. ПОЛЬЗ. СТР.	красный
	M6	ИМИТАЦИЯ СИГНАЛОВ	синий
	M8	ИМИТАЦИЯ СИГНАЛОВ	синий
	NV	РЕЖИМ УПР. НЕДОСТ.	красный

Направление	Сигнал в окне управления	Обозначение в ТПТС	Цвет активного сообщения в окне управления
	TE	ТЕСТОВЫЙ РЕЖИМ	красный
	UAV	НИЗКОЕ НАПРЯЖЕНИЕ	красный
ОБЩИЕ СИГНАЛЫ	VOV	МЕСТНОЕ УПРАВЛЕНИЕ	красный
	UEF	БЛОКИР. НЕСООТВЕТСТВИЯ	зеленый
	UEFS	БЛОКИР. СИГН. ЗАЩИТЫ 1	зеленый

При наведении указателя «мыши» на сигнал в NOBI-протоколе появится всплывающее окно с описанием данного сигнала, пример такого окна приведён на рисунке 59

8.5 Изображение регулирующего клапана

Пример пиктограммы регулирующего клапана для отображения на мнемосхеме СВУ изображен на рисунке 66.

Рисунок 66

Для управления регулируемой арматурой в комплексе ТПТС используется канальный оператор \mathbf{SR} .

Принципы окрашивания в цвета, мигания (с частотой 2 Гц) и мерцания (с частотой 8 Гц) пиктограммы регулирующего клапана приведены в таблице 13.

Таблица 13

Состояние	Цвет элемента	Цвет фона, динамика	Пример	Условия состояния (для ТПТС)
Открыто	Желтый	-		ARAF = 1
Автомат	Правый круглый индикатор желтый	-		LAR = 1 или A = 1 при недостоверной LAR

Состояние	Цвет элемента	Цвет фона, динамика	Пример	Условия состояния (для ТПТС)
Неисправность состояния «Автомат»	Контур правого круглого индикатора красный	Контур правого круглого индикатора мигает		LAR = 1
Закрыто	Зеленый	-		ARZU = 1
Дистанция	Левый круглый индикатор зелёный	-		LHR = 1 или H = 1 при недостоверной LHR
Неисправность состояния «Дистанция»	Контур левого круглого индикатора красный	Контур левого круглого индикатора мигает		LHB = 1
СН управления	-	Красный контур мигает Красный	•©°	LSB = 1 LSR = 1
квитированный Недостоверность	-	контур Малиновый фон круга		Отсутствие какого-либо сигнала, отвечающего за формирование световой сигнализации
Направление потока	-	Серый треугольник со стороны потока		

В случае, если:

- вся сигнализация квитирована контур элемента статичен (0 Гц);
- $-\,$ при наличии отменённой, но не квитированной сигнализации, контур элемента мигает с частотой 0.5 Гц;
- если имеется неквитированный неотменённый сигнал темп мигания контура элемента 2 Гц.

Пример пиктограммы индикатора положения регулирующего клапана для отображения на мнемосхеме СВУ изображен на рисунке 67.

Рисунок 67

Принципы окрашивания в цвета и расширенное окно для индикатора положения регулирующего клапана идентичны блоку отображения аналогового параметра 8.1.

При наведении курсора «мыши» на пиктограмму элемента регулирующей арматуры отобразится ККS-код данной арматуры.

8.5.1 Управление регулирующим клапаном

Вид стандартного окна управления регулирующим клапаном приведен на рисунке 68. Вызов окна осуществляется двойным нажатием левой клавишей «мыши» на пиктограмму элемента. На данном примере регулирующий клапан находится в состоянии «АВТОМАТ».

Рисунок 68

Именем окна управления является KKS-код данной регулирующей арматуры.

В окне управления компрессором находятся следующие элементы:

Аналоговый индикатор с цифровым обозначением степени открытия клапана, дублированный барографом. При клике на индикатор открывается информационное окно для аналогового сигнала.

Аналоговый индикатор с цифровым обозначением отклонения степени открытия клапана от заданного значения, дублированный барографом. При клике на индикатор открывается информационное окно для аналогового сигнала.

Аналоговый индикатор с цифровым обозначением текущего заданного значения, дублированный барографом. При клике на индикатор открывается информационное окно для аналогового сигнала.

Поле ввода задания нового значения («Изменить задание»), которое отрабатывается только в режиме «АВТОМАТ».

Пиктограмма – аналогичная пиктограмме на технологическом видеокадре. Для пиктограммы в стандартном окне управления используется те же принципы окрашивания в цвета и мигания, что и для пиктограммы на технологическом видеокадре.

Кнопка «ЗАКР. НА ШАГ» – кнопка без фиксации, доступна только при состоянии «ДИСТАНЦИЯ» регулирующей арматуры. При недоступности кнопки (оборудование в ремонте или автоматический режим) – кнопка неактивна. При клике на кнопку «ЗАКР. НА ШАГ» на исполнительный механизм проходит команда закрытия арматуры на один шаг. Величина шага определяется аппаратурой ТПТС. Команда посылается на нижний уровень при переходе кнопки в отжатое состояние.

Кнопка «ОТКР. НА ШАГ» – кнопка без фиксации, доступна только при состоянии «ДИСТАНЦИЯ» регулирующей арматуры. При недоступности кнопки (оборудование в ремонте или автоматический режим) – кнопка неактивна. При клике на кнопку «ОТКР. НА ШАГ» на исполнительный механизм приходит команда открытия арматуры на один шаг. Величина шага определяется аппаратурой ТПТС. Команда посылается на нижний уровень при переходе кнопки в отжатое состояние.

Кнопка «ЗАКРЫТЬ» — кнопка команды «Закрыть» отражает три возможных состояния: кнопка недоступна, кнопка отжата, кнопка нажата. Кнопка становится доступной при наличии дистанционного режима, отсутствии вывода в ремонт и отсутствии состояния «Закрыто». При недоступности кнопки (арматура закрыта, оборудование в ремонте или автоматический режим) — кнопка неактивна. При открытии

окна управления и доступности кнопки она всегда находится в отжатом состоянии (даже если нажать кнопку, закрыть окно управления и затем снова открыть его). При клике на кнопку «ЗАКРЫТЬ» она переходит в нажатое состояние. Если кнопка «ЗАКРЫТЬ» нажата, то при клике на кнопку «ВЫПОЛНИТЬ» на аппаратуру выбора режима работы проходит команда закрытия арматуры до конца, а кнопка «ЗАКРЫТЬ» переходит в отжатое состояние.

Кнопка «ОТКРЫТЬ» – кнопка команды «Открыть» отражает три возможных состояния: кнопка недоступна, кнопка отжата, кнопка нажата. Кнопка становится доступной при наличии дистанционного режима, отсутствии вывода в ремонт и отсутствии состояния «Открыто». При недоступности кнопки (клапан открыт, оборудование в ремонте или автоматический режим) – кнопка неактивна. При открытии окна управления и доступности кнопки она всегда находится в отжатом состоянии (даже если нажать кнопку, закрыть окно управления и затем снова открыть его). При клике на кнопку «ОТКРЫТЬ» она переходит в нажатое состояние. Если кнопка «ОТКРЫТЬ» нажата, при клике на кнопку «ВЫПОЛНИТЬ» подаётся команда открытия арматуры до конца, а кнопка «ОТКРЫТЬ» переходит в отжатое состояние.

Кнопка «СТОП» — кнопка без фиксации, доступна только при состоянии «ДИСТАНЦИЯ» регулирующей арматуры и отсутствии вывода в ремонт. При недоступности кнопки (оборудование в ремонте или автоматический режим) — кнопка неактивна. При нажатии на активную кнопку «СТОП» на исполнительный механизм проходит команда останова клапана.

Кнопка «ДИСТ.»/«АВТОМАТ» – кнопка переключения режимов «Дистанция»/«Автомат». Надпись и цвет кнопки меняется в зависимости от текущего состояния регулирующего клапана: при состоянии «Дистанция» – кнопка зелёного цвета с надписью «ДИСТ.», при состоянии «Автомат» регулирующего клапана – кнопка зеленого цвета с надписью «АВТОМАТ». Если текущее состояние не определено, то цвет кнопки серый, выводится надпись «АВТ./ДИСТ.» При недоступности кнопки (оборудование в ремонте) – кнопка неактивна. При открытии окна управления и доступности кнопки она всегда находится в отжатом состоянии (даже если нажать кнопку, закрыть окно управления и затем снова открыть его). При клике на кнопку «ДИСТ.»/«АВТОМАТ» она переходит в нажатое состояние. Если кнопка нажата, повторный клик на кнопку делает ее отжатой. Если кнопка «ДИСТ.»/«АВТОМАТ» нажата, то при клике на кнопку

«ВЫПОЛНИТЬ» посылается команда переключения режима, а кнопка «ДИСТ.»/«АВТОМАТ» переходит в отжатое состояние.

Кнопка «ВЫПОЛНИТЬ» — для подтверждения команд «Закрыть»/«Открыть» и переключения между режимами «Дист.»/«Автомат». При отсутствии выбора кнопок «Закрыть»/«Открыть», «Дист.»/«Автомат» или выводе оборудования в ремонт кнопка неактивна. После каждого действия оператора кнопка автоматически возвращается в отжатое состояние.

Кнопка «ПОДРОБНО» используется для вызова расширенного окна управления.

Кнопка «ДОКУМЕНТАЦИЯ» используется для доступа к эксплуатационной документации по оборудованию.

Пример подробного окна управления регулирующей арматурой приведён на рисунке 69.

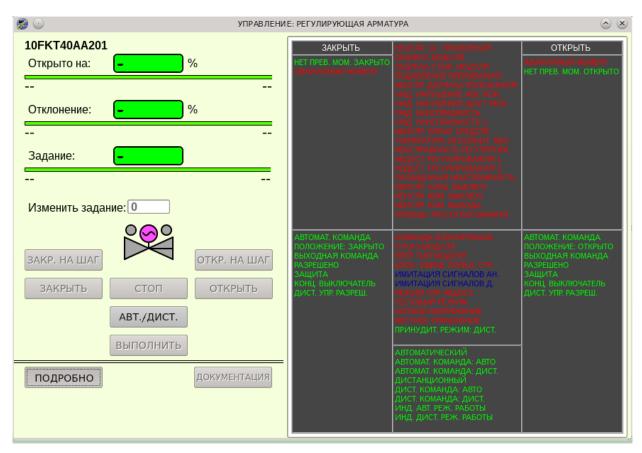


Рисунок 69

Перечень сигналов, отвечающих за индикацию соответствующих строк и правила цветового кодирования приведены в таблице 14.

Таблица 14

Направление	Сигнал в окне управления	Обозначение в ТПТС	Цвет активного сообщения в окно управления
	DENZU	НЕТ ПРЕВ. МОМ. ЗАКРЫТО	зеленый
	DEZUS	АВАРИЙНЫЙ МОМЕНТ	красный
	ABS	АВТОМАТ. КОМАНДА	зеленый
	ARZU	ПОЛОЖЕНИЕ: ЗАКРЫТО	зеленый
ЗАКРЫТЬ	BS	ВЫХОДНАЯ КОМАНДА	зеленый
	RFS	РАЗРЕШЕНО	зеленый
	SSV	ЗАЩИТА	зеленый
	WEZU	КОНЦ. ВЫКЛЮЧАТЕЛЬ	зеленый
	YFS	ДИСТ. УПР. РАЗРЕШ.	зеленый
	DEAFS	АВАРИЙНЫЙ МОМЕНТ	красный
	DENAF	НЕТ ПРЕВ. МОМ. ОТКРЫТО	зеленый
	ABOE	АВТОМАТ. КОМАНДА	зеленый
OTEDLITI	ARAF	ПОЛОЖЕНИЕ: ОТКРЫТО	зеленый
ОТКРЫТЬ	BOE	ВЫХОДНАЯ КОМАНДА	зеленый
	RFOE	РАЗРЕШЕНО	зеленый
	SOEV	ЗАЩИТА	зеленый
	WEAF	КОНЦ. ВЫКЛЮЧАТЕЛЬ	зеленый
	YFOE	ДИСТ. УПР. РАЗРЕШ.	зеленый
	AZS	НЕИСПР. СХ. УПРАВЛЕНИЯ	красный
	BGF	ОШИБКА МОДУЛЯ	красный
	ESF	ОШИБКА СТЫК. МОДУЛЯ	красный
	FUAS	ПОДАВЛЕНИЕ ПРЕРЫВАНИЙ	красный
	GSI	НЕИСПР. ДАТЧИКА ПОЛОЖЕНИЯ	красный
	LAB	ИНД. НАРУШЕНИЕ АВТ. РЕЖ.	красный
	LHB	ИНД. НАРУШЕНИЕ ДИСТ. РЕЖ.	красный
ОБЩИЕ	LSB	ИНД. НЕИСПРАВНОСТЬ	красный
Овщие	LSR	ИНД. НЕИСПРАВНОСТЬ 2	красный
	M9	НЕИСПР. АППАР. СРЕДСТВ	красный
	MTZH	ТЕМПЕРАТУРА ИСПОЛНИТ. МЕХ.	красный
	MUS	НЕИСПРАВНОСТЬ РЕГУЛЯТОРА	красный
	NV1	НЕДОСТ. РЕГУЛИРОВАНИЯ 1	красный
	NV2	НЕДОСТ. РЕГУЛИРОВАНИЯ 2	красный
	OR	ОБОБЩЕННАЯ НЕИСПРАВНОСТЬ	красный
	RMF1	НЕИСПР. КОНЦ. ВЫКЛЮЧ.	красный

Направление	Сигнал в окне	Обозначение в ТПТС	Цвет активного
	управления		сообщения в окне
			управления
	RMF2	НЕИСПР. МОМ. ВЫКЛЮЧ.	красный
	UEBA	НЕИСПР. КОМ. ВЫХОДА	красный
	XDGM	ПРЕВЫШ. РАССОГЛАСОВАНИЯ	красный
	BBL	КОМАНДА БЛОКИРОВАНА	красный
	BGAU	ОТКАЗ МОДУЛЯ	красный
ОБЩИЕ	BGT	НЕПР. ТИП МОДУЛЯ	красный
ОВЩИЕ	BSP	БЛОК. ОБРАБ. ПОЛЬЗ. СТР.	красный
	M6	ИМИТАЦИЯ СИГНАЛОВ АН.	синий
	M8	ИМИТАЦИЯ СИГНАЛОВ Д.	синий
	NV	РЕЖИМ УПР. НЕДОСТ.	красный
	TE	ТЕСТОВЫЙ РЕЖИМ	красный
	UA	НИЗКОЕ НАПРЯЖЕНИЕ	красный
	VO	МЕСТНОЕ УПРАВЛЕНИЕ	красный
	ZWHF	ПРИНУДИТ. РЕЖИМ: ДИСТ.	зеленый
	A	АВТОМАТИЧЕСКИЙ	зеленый
	ABA	АВТОМАТ. КОМАНДА: АВТО	зеленый
ОБЩИЕ	ABH	АВТОМАТ. КОМАНДА: ДИСТ.	зеленый
СИГНАЛЫ	Н	ДИСТАНЦИОННЫЙ	зеленый
	HBA	ДИСТ. КОМАНДА: АВТО	зеленый
	НВН	ДИСТ. КОМАНДА: ДИСТ.	зеленый
	LAR	ИНД. АВТ. РЕЖ. РАБОТЫ	зеленый
	LHR	ИНД. ДИСТ. РЕЖ. РАБОТЫ	зеленый

При наведении указателя «мыши» на сигнал в NOBI-протоколе появляется всплывающее окно с описанием выбранного сигнала, пример такого всплывающего окна приведён на рисунке 59.

8.6 Изображение блока задания уставки

В комплексе ТПТС в качестве блока задания уставки используется канальный оператор **IBR**.

Пример пиктограммы блока задания уставки для отображения на мнемосхеме СВУ приведен на рисунке 70.

\$ 8.0

Рисунок 70

Принципы окрашивания в цвета и мигания пиктограммы блока задания уставки приведены в таблице 15 для канального оператора **IBR**.

Таблица 15

Состояние	Цвет элемента	Цвет фона, динамика	Пример	Условия состояния (для ТПТС)
АВТОМАТ Недостоверность отсутствует	Желтый	-	13.3	LAR=1, либо A =1 при недостоверном LAR;
ДИСТАНЦИОННЫЙ Недостоверность отсутствует	Зеленый	-	15.4	LHR=1, либо H =1 при недостоверном LHR
НЕИСПРАВНОСТЬ	-	Кра сный контур мигает	2.0	Любой из сигналов ESF, BGAU, BGT, OR, BGF,BSP, EXVE, XOGM, MUSV,MISI = 1 или любой из LAP, LSR, LSB = 1
НЕДОСТОВЕРНОСТЬ при любом состоянии	Малино- вый	-	10.4	NV=1 или любой другой недостоверны, или NV- недостоверен
НЕОПРЕДЕЛЕННОЕ состояние Недостоверность отсутствует	Серый	-	\$ 8.0	Невозможно сформировать состояние «АВТОМАТ» или «ДИСТАНЦИОННЫЙ»
Отсутствует значение аналогового параметра или недостоверно	-	-	1	

В случае, если:

- вся сигнализация квитирована контур элемента статичен (0 Гц);
- при наличии отменённой, но не квитированной сигнализации, контур элемента
 мигает с частотой 0.5 Гц;
- если имеется неквитированный неотменённый сигнал темп мигания контура элемента 2 Гц.

При наведении курсора «мыши» на пиктограмму элемента блока задания уставки отобразится его KKS-код.

8.6.1 Управление блоком задания уставки

Окно управления блоком задания уставки (рисунок 71) вызывается двойным щелчком левой клавиши «мыши» по пиктограмме элемента. Окно управления содержит пиктограмму самого оборудования с указанием состояния (согласно таблице 15).

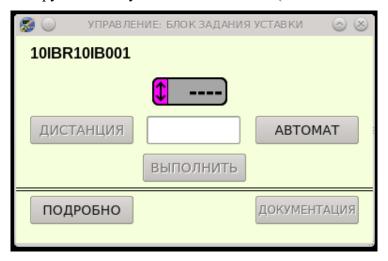


Рисунок 71

Именем окна управления является KKS-код блока задания уставки.

В окне управления блоком задания уставки находятся следующие элементы:

Пиктограмма — аналогичная пиктограмме на технологическом видеокадре. Для пиктограммы в стандартном окне управления используется те же принципы окрашивания в цвета и мигания, что и для пиктограммы на технологическом видеокадре.

Поле ввода задания нового значения, которое отрабатывается только в режиме «АВТОМАТ». При отведении курсора от поля ввода, поле ввода очищается, при наличии в нем какого-либо значения.

Кнопка «ДИСТАНЦИЯ» – кнопка переключения в режим «Дистанция». Надпись и цвет кнопки меняется в зависимости от текущего состояния параметра: при состоянии «Дистанция» – кнопка зелёного цвета с надписью «ДИСТАНЦИЯ». Если текущее состояние не определено, то цвет кнопки серый. При недоступности кнопки (оборудование в ремонте) – кнопка неактивна. При открытии окна управления и доступности кнопки она всегда находится в отжатом состоянии (даже если нажать кнопку, закрыть окно управления и затем снова открыть его). При клике на кнопку «ДИСТАНЦИЯ» она переходит в нажатое состояние. Если кнопка нажата, повторный клик на кнопку делает ее отжатой. Если кнопка «ДИСТАНЦИЯ» нажата, то при клике на

кнопку «ВЫПОЛНИТЬ» посылается команда переключения режима, а кнопка «ДИСТАНЦИЯ» переходит в отжатое состояние.

Кнопка «ВЫПОЛНИТЬ» — для подтверждения команд переключения между режимами «Дистанция»/«Автомат». При отсутствии выбора кнопок «Дистанция»/«Автомат» или выводе оборудования в ремонт кнопка неактивна. После каждого действия оператора кнопка автоматически возвращается в отжатое состояние.

Кнопка «ПОДРОБНО» используется для вызова расширенного окна управления.

Кнопка «ДОКУМЕНТАЦИЯ» используется для доступа к эксплуатационной документации по оборудованию.

Кнопка со значком «Х» в правом верхнем углу окна управления используется для закрытия окна управления.

Пример подробного окна управления блоком задания уставки приведён на рисунке 72.

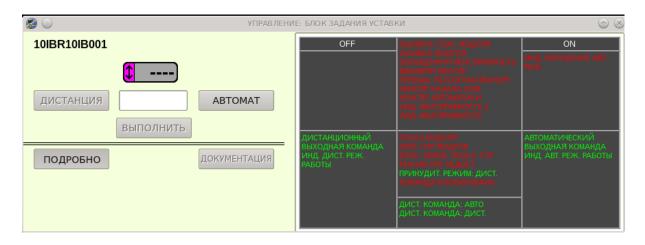


Рисунок 72

Перечень сигналов, отвечающих за индикацию соответствующих строк и правила цветового кодирования приведены в таблице 16.

Таблица 16

Направле-ние	Обозначение в ТПТС	Сигнал в окне управления	Цвет активного сообщения в окне управления
	Н	ДИСТАНЦИОННЫЙ	зеленый
ДИСТАНЦИЯ	BS	ВЫХОДНАЯ КОМАНДА	зеленый
	LHR	ИНД. ДИСТ. РЕЖ. РАБОТЫ	зеленый

	LAB	ИНД. НАРУШЕНИЕ АВТ. РЕЖ.	красный
ABTOMAT	A	АВТОМАТИЧЕСКИЙ	зеленый
ABTOMAT	BOE	ВЫХОДНАЯ КОМАНДА	зеленый
	LAR	ИНД. АВТ. РЕЖ. РАБОТЫ	зеленый
	ESF	ОШИБКА СТЫК. МОДУЛЯ	красный
	BGF	ОШИБКА МОДУЛЯ	красный
	OR	ОБОБЩЕННАЯ НЕИСПРАВНОСТЬ	красный
	EXFE	ВНЕШНЯЯ НЕИСПР.	красный
	XDGM	ПРЕВЫШ. РАССОГЛАСОВАНИЯ	красный
	MUSV	НЕИСПР. КАНАЛА ИЗМ.	красный
	M15i	НЕИСПР. АВТОМАТИКИ	красный
ОБЩИЕ	LSR	ИНД. НЕИСПРАВНОСТЬ 2	красный
92412	LSB	ИНД. НЕИСПРАВНОСТЬ	красный
	BGAU	ОТКАЗ МОДУЛЯ	красный
	BGT	НЕПР. ТИП МОДУЛЯ	красный
	BSP	БЛОК. ОБРАБ. ПОЛЬЗ. СТР.	красный
	NV	РЕЖИМ УПР. НЕДОСТ.	красный
	ZWHV	ПРИНУДИТ. РЕЖИМ: ДИСТ.	зеленый
	BBL	КОМАНДА БЛОКИРОВАНА	красный
	HBA	ДИСТ. КОМАНДА: АВТО	зеленый
	НВН	ДИСТ. КОМАНДА: ДИСТ.	зеленый

При наведении указателя «мыши» на сигнал в NOBI-протоколе появляется всплывающее окно с описанием выбранного сигнала, пример такого всплывающего окна приведён на рисунке 59.

8.7 Изображение блока выбора режима

В комплексе ТПТС в качестве блока переключения режимов работы используется интерфейсный блок вспомогательного управления (переключения режимов работы)VL/IVL.

Пример пиктограммы выбора режимов работы для отображения на мнемосхеме СВУ изображен на рисунке 73.

Рисунок 73

Принципы окрашивания в цвета и мигания пиктограммы блока выбора режимов работы приведены в таблице 17 для канального оператора **VL/IVL**.

Таблица 17

Состояние	Цвет элемента	Цвет фона, динамика	Пример	Условия состояния (для ТПТС)
Неисправность	-	Красный контур мигает	P 1	OS = 1
Режим 1	Зелёный	Надпись «Р 1»		LVW1R = 1 или VW1= 1 при недостоверной LVW1R
Нарушение состояния «Режим 1»	Зелёный	Мигает надпись «Р 1»	P 1	LVW1B = 1
Режим 2	Зелёный	Надпись «Р 2»	D 2	LVW2R = 1 или HVW2 = 1 при недостоверной LVW2R
Нарушение состояния «Режим 2»	Зелёный	Мигает надпись «Р 2»		LVW2B = 1
Режим 3	Зеленый	Надпись «Р 3»		LVW3R = 1 или VW3 = 1 при недостоверной LVW3R
Нарушение состояния «Режим 3»	Зеленый	Мигает надпись «Р 3»	P3	LVW3B = 1
Нет сведений о выбранном режиме	Белый	Надпись «»	P-	
Все сигналы квитированы	-	Статичный контур элемента	P1	

В случае, если:

- вся сигнализация квитирована контур элемента статичен (0 Гц);
- при наличии отменённой, но не квитированной сигнализации, контур элемента мигает с частотой $0.5~\Gamma$ ц;

если имеется неквитированный неотменённый сигнал - темп мигания контура
 элемента 2 Гц.

При наведении курсора «мыши» на пиктограмму блока выбора режима появится его ККS-код.

8.7.1 Управление выбором режима

Окно управления блоком выбора режима (рисунок 74) вызывается двойным щелчком левой клавиши «мыши» по пиктограмме выбора режима. Окно управления содержит пиктограмму самого оборудования с указанием состояния (согласно таблице 17). Кнопка выбора текущего состояния должна быть недоступна.

Рисунок 74

В шапке окна управления блоком выбора режимов работы выводится KKS-код элемента.

В окне управления блоком выбора режимов работы находятся следующие элементы:

Пиктограмма – аналогичная пиктограмме на технологическом видеокадре. Для пиктограммы в стандартном окне управления используется те же принципы окрашивания в цвета и мигания, что и для пиктограммы на технологическом видеокадре.

Кнопка «РЕЖИМ 1» –кнопка команды выбора режима работы №1 отражает три возможных состояния: кнопка недоступна, кнопка отжата, кнопка нажата. Кнопка становится неактивной при наличии состояния предвыбора «РЕЖИМ 1». При открытии окна управления и доступности кнопки она всегда находится в отжатом состоянии (даже если нажать кнопку, закрыть окно управления и затем снова открыть его). При клике на кнопку «РЕЖИМ 1» она переходит в нажатое состояние. Если кнопка нажата, повторный

клик на кнопку делает ее отжатой. Если кнопка «РЕЖИМ 1» нажата, то при клике на кнопку «ВЫПОЛНИТЬ» на аппаратуру управления логикой работы проходит команда выбора режима №1, а кнопка переходит в отжатое состояние. Клик на кнопку «РЕЖИМ 2» или «РЕЖИМ 3» переводит кнопку «РЕЖИМ 1» в отжатое состояние.

Кнопка «РЕЖИМ 2» – кнопка команды выбора режима работы № 3 отражает три возможных состояния: кнопка недоступна, кнопка отжата, кнопка нажата. Кнопка становится неактивной при наличии состояния предвыбора «РЕЖИМ 2». При открытии окна управления и доступности кнопки она всегда находится в отжатом состоянии (даже если нажать кнопку, закрыть окно управления и затем снова открыть его). При клике на кнопку «РЕЖИМ 2» она переходит в нажатое состояние. Если кнопка нажата, повторный клик на кнопку делает ее отжатой. Если кнопка «РЕЖИМ 2» нажата, то при клике на кнопку «ВЫПОЛНИТЬ» на аппаратуру управления логикой работы проходит команда выбора режима № 2, а кнопка переходит в отжатое состояние. Клик на кнопку «РЕЖИМ 1» или «РЕЖИМ 3» переводит кнопку «РЕЖИМ 2» в отжатое состояние.

Кнопка «РЕЖИМ 3» – кнопка команды выбора режима работы №3 отражает три возможных состояния: кнопка недоступна, кнопка отжата, кнопка нажата. Кнопка становится неактивной при наличии состояния предвыбора «РЕЖИМ 3». При открытии окна управления и доступности кнопки она всегда находится в отжатом состоянии (даже если нажать кнопку, закрыть окно управления и затем снова открыть его). При клике на кнопку «РЕЖИМ 3» она переходит в нажатое состояние. Если кнопка нажата, повторный клик на кнопку делает ее отжатой. Если кнопка «РЕЖИМ 3» нажата, то при клике на кнопку «ВЫПОЛНИТЬ» на аппаратуру управления логикой работы проходит команда выбора режима № 3, а кнопка переходит в отжатое состояние. Клик на кнопку «РЕЖИМ 1» или «РЕЖИМ 2» переводит кнопку «РЕЖИМ 3» в отжатое состояние.

Кнопка «ВЫПОЛНИТЬ» используется для подтверждения команд «РЕЖИМ 1», «РЕЖИМ 2», «РЕЖИМ 3». При отсутствии выбора кнопок «РЕЖИМ 1», «РЕЖИМ 2», «РЕЖИМ 3» или выводе оборудования в ремонт кнопка неактивна. После каждого действия оператора кнопка автоматически возвращается в отжатое состояние.

Кнопка «ДОКУМЕНТАЦИЯ» используется для доступа к эксплуатационной документации по оборудованию.

Пример подробного окна управления блоком выбора режима приведён на рисунке 75.

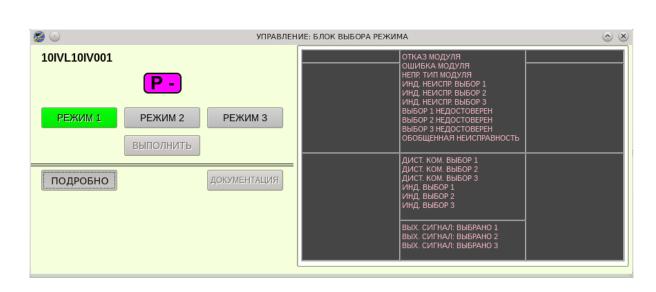


Рисунок 75

Перечень сигналов, отвечающих за индикацию соответствующих строк и правила цветового кодирования приведены в таблице 18.

Таблица 18

Направление	Обозначение в ТПТС	Сигнал в окне управления	Цвет активного сообщения в окне управления	
	BGAU	ОТКАЗ МОДУЛЯ	красный	
	BGF	ОШИБКА МОДУЛЯ	красный	
	BGT	НЕПР. ТИП МОДУЛЯ	красный	
	ESF	ОШИБКА СТЫК. МОДУЛЯ	красный	
	LVW1B	ИНД. НЕИСПР. ВЫБОР 1	зелёный	
	LVW2B	ИНД. НЕИСПР. ВЫБОР 2	зелёный	
	LVW3B	ИНД. НЕИСПР. ВЫБОР 3	зелёный	
	NV1	ВЫБОР 1 НЕДОСТОВЕРЕН	красный	
	NV2	ВЫБОР 2 НЕДОСТОВЕРЕН	зелёный	
ОБЩИЕ	NV3	ВЫБОР 3 НЕДОСТОВЕРЕН	красный	
СИГНАЛЫ	OS	ОБОБЩЕННАЯ НЕИСПРАВНОСТЬ	зелёный	
	HVW1	ДИСТ. КОМ. ВЫБОР 1	красный	
	HVW2	ДИСТ. КОМ. ВЫБОР 2	зелёный	
	HVW3	ДИСТ. КОМ. ВЫБОР 3	красный	
	LVW1R	ИНД. ВЫБОР 1	красный	
	LVW2R	ИНД. ВЫБОР 2	красный	
	LVW3R	ИНД. ВЫБОР 3	красный	
	VW1	ВЫБРАНО 1	зелёный	
	VW2	ВЫБРАНО 2	зелёный	
	VW3	ВЫБРАНО 3	зелёный	

8.8 Изображение блока переключения режима

В комплексе ТПТС в качестве блока выбора режимов работы используется канальный оператор **TE**.

Пример пиктограммы блока выбора режимов работы для отображения на мнемосхеме СВУ изображен на рисунке 76.

Рисунок 76

Принципы окрашивания в цвета и мигания пиктограммы блока переключения режимов работы приведены в таблице 19 для канального оператора **TE**.

Таблица 19

Состояние	Цвет элемента	Цвет фона, динамика	Пример	Условия состояния(для ТПТС)
АВТОМАТ Недостоверность отсутствует	Желтый	-	авто	LAR=1, либо A =1 при недостоверном LAR
ДИСТАНЦИОННЫЙ Недостоверность отсутствует	Зеленый	-	дист	LHR=1, либо H =1 при недостоверном LHR
Неопределенный режим работы	-			Невозможно сформировать режим АВТО или ДИСТ
НЕИСПРАВНОСТЬ	-	Красный контур мигает		Любой из сигналов LAP, LHP, LSP, LSR, OS=1, или любой из сигналов LHR, LAR, H, A=1
НЕДОСТОВЕРНОСТЬ	Малино- вый	-		NV=1 и любой другой недостоверны, или NV- недостоверен

В случае, если:

- вся сигнализация квитирована контур элемента статичен (0 Гц);
- при наличии отменённой, но не квитированной сигнализации, контур элемента
 мигает с частотой 0.5 Гц;
- если имеется неквитированный неотменённый сигнал темп мигания контура
 элемента 2 Гц.

При наведении курсора «мыши» на пиктограмму блока переключения режима отобразится его ККS-код.

8.8.1 Управление переключением режима

Окно управления блоком переключения режима (рисунок 77) вызывается двойным щелчком левой клавиши «мыши» по пиктограмме элемента. Окно управления содержит пиктограмму самого оборудования с указанием состояния (согласно таблице 19). Кнопка выбора текущего состояния должна быть недоступна.

Рисунок 77

В шапке окна управления блоком переключения режимов работы выводится KKSкод элемента.

В окне управления блоком переключения режимов работы находятся следующие элементы:

Пиктограмма — аналогичная пиктограмме на технологическом видеокадре. Для пиктограммы в стандартном окне управления используется те же принципы окрашивания в цвета и мигания, что и для пиктограммы на технологическом видеокадре.

Кнопка «АВТО/ДИСТ» – кнопка переключения режима работы отражает три возможных состояния: кнопка недоступна, кнопка отжата, кнопка нажата. Кнопка становится неактивной при отсутствии привязки. При открытии окна управления и доступности кнопки она всегда находится в отжатом состоянии (даже если нажать кнопку, закрыть окно управления и затем снова открыть его). При клике на кнопку «АВТО/ДИСТ» она переходит в нажатое состояние. Если кнопка нажата, повторный клик на кнопку делает ее отжатой. Если кнопка «АВТО/ДИСТ» нажата, то при клике на кнопку «ВЫПОЛНИТЬ» на аппаратуру управления логикой работы проходит команда выбора

режима «Автомат», если ранее был выбран режим «Дистанция», или команда выбора режима «Дистанция», если ранее был выбран режим «Автомат». Кнопка переходит в отжатое состояние.

Кнопка «ВЫПОЛНИТЬ» используется для подтверждения команд «Автомат», «Дистанция». При выводе оборудования в ремонт кнопка неактивна. После каждого действия оператора кнопка автоматически возвращается в отжатое состояние.

Кнопка «ДОКУМЕНТАЦИЯ» используется для доступа к эксплуатационной документации по оборудованию.

Пример подробного окна управления переключения режима приведён на рисунке 78.

Рисунок 78

Перечень сигналов, отвечающих за индикацию соответствующих строк и правила цветового кодирования приведены в таблице 20.

Таблица 20

Направление	Обозначение в ТПТС	Сигнал в окне управления	Цвет активного сообщения в окне управления
	ИНД. НАРУШЕНИЕ ДИСТ. РЕЖ.	LHB	красный
ДИСТАНЦИЯ	ДИСТАНЦИОННЫЙ	Н	зеленый
	ИНД. ДИСТ. РЕЖ. РАБОТЫ	LHR	зеленый
ABTOMAT	ИНД. НАРУШЕНИЕ АВТ. РЕЖ.	LAB	красный
ABTOWAT	АВТОМАТИЧЕСКИЙ	A	зеленый

Направление	Обозначение в ТПТС	Сигнал в окне управления	Цвет активного сообщения в окно управления
	ИНД. АВТ. РЕЖ. РАБОТЫ	LAR	зеленый
	ОТКАЗ МОДУЛЯ	BGAU	красный
	ОШИБКА МОДУЛЯ	BGF	красный
	НЕПР. ТИП МОДУЛЯ	BGT	красный
	БЛОК. ОБРАБ. ПОЛЬЗ. СТР.	BSP	красный
OFHILE	ОШИБКА СТЫК. МОДУЛЯ	ESF	красный
ОБЩИЕ СИГНАЛЫ	МОДУЛЬ НЕ УСТАНОВЛЕН	FUFE	красный
Сиппалы	ИНД. НЕИСПРАВНОСТЬ	LSB	красный
	ИНД. НЕИСПРАВНОСТЬ 2	LSR	красный
	НЕИСПРАВНОСТЬ АПП. СРЕДСТВ	M16	красный
	ОБОБЩЕННАЯ НЕИСПРАВНОСТЬ	OS	красный
	ВХОД: ОСТАНОВ	BAB	зеленый
	ВХОД: ОСТАНОВ2	BAS	зеленый
	ИМИТАЦИЯ СИГНАЛОВ АН.	M6	синий
	ИМИТАЦИЯ СИГНАЛОВ Д.	M8	синий
	РЕЖИМ УПР. НЕДОСТ.	NV	красный
	КОМАНДА ПУСК	ST	зеленый
ОБЩИЕ	ПРИНУДИТ. РЕЖИМ: ДИСТ.	ZWHV	зеленый
СИГНАЛЫ	АВТОМАТ. КОМАНДА: АВТО	BAA	зеленый
	АВТОМАТ. КОМАНДА: ДИСТ.	ВАН	зеленый
	КОМАНДА БЛОКИРОВАНА	BBL	красный
	КОМАНДА ПУСК	BT	зеленый
	ДИСТ. КОМАНДА: АВТО	HBA	зеленый
	ДИСТ. КОМАНДА: ДИСТ.	НВН	зеленый

При наведении указателя «мыши» на сигнал в NOBI-протоколе появляется всплывающее окно с описанием выбранного сигнала, пример такого всплывающего окна приведён на рисунке 59.

8.9 Изображение ламп одиночной и групповой сигнализации

Пример пиктограммы ламп одиночной и групповой сигнализации для отображения на мнемосхеме СВУ изображен на рисунке 79.

Рисунок 79

Принципы окрашивания в цвета и мигания индикатора (лампы) одиночной сигнализации приведены в таблице 21, для групповой сигнализации приведены в таблице 22.

Таблица 21

Значение сигнала	Цвет фона, динамика	Пример	Приоритет
0	Цвет фона	\circ	5
	Красный,	- 0	
1 (аварийная)	мигание контура	— 	4
	элемента		
	Желтый,	- 0	
1 (предупредительная)	мигание контура	○ 	3
	элемента		
	Мигание красного	0	2
1 (неисправность)	контура элемента	⊗ ●	2
Недостоверный 0	Малиновый	○ ③	1
Недостоверная 1	Малиновый	○ ③	1
Dag gyryyg yy ynyryyg angyy	Контур элемента		
Все сигналы квитированы	статичен		

Таблица 22

Значение сигнала	Цвет фона, динамика	Пример	Приоритет
0 для всех сигналов группы	Цвет фона	\bigcirc	5
1 (аварийная) все сигналы группы достоверны	Красный	• 🕹	1
Наличие хотя бы одного достоверного аварийного сигнала при недостоверности остальных сигналов группы			
1 (предупредительная) при отсутствии аварийной сигнализации			
Наличие хотя бы одного достоверного предупредительного сигнала при недостоверности остальных сигналов группы	Желтый	0	2
1 (неисправность)	Мигание	O	
Наличие хотя бы одного достоверного сигнала о неисправности при недостоверности остальных сигналов группы	красного контура элемента	⊗ ⑤	3
Недостоверный 0 (все сигналы группы имеют значение 0, но значение хотя бы одного недостоверно)	Малиновый	○ ③	4
Недостоверная 1 хотя бы для одного из сигналов группы (значение остальных сигналов равно 0)	Малиновый	○ ③	4
Все сигналы квитированы	Контур элемента статичен	\circ	

В случае, если:

- вся сигнализация квитирована контур элемента статичен (0 Гц);
- при наличии отменённой, но не квитированной сигнализации, контур элемента мигает с частотой $0.5~\Gamma$ ц;
- если имеется неквитированный неотменённый сигнал темп мигания контура элемента 2 Гц.

При наведении курсора «мыши» на пиктограмму лампы отобразится ККS-код сигнала или имя лампы (для групповой сигнализации).

8.10 Интерфейсный блок функционально-группового управления (ФГУ)

Пример пиктограммы $\Phi \Gamma Y$ для отображения на BK CBУ изображен на рисунке 80.

шаг: 87

Рисунок 80

Принципы окрашивания в цвета, мигания (с частотой 2 Γ ц) и мерцания (с частотой 8 Γ ц) пиктограммы клапана приведены в таблице 23 для канального оператора **КО**.

Таблица 23

Состояние	Цвет элемента	Пример	Цвет фона, динамика, текст	Условия состояния
Автомат	Желтый	шаг: 22	-	LAR=1 или A=1 при недостоверной LAR
Дистанция	Зеленый	шаг: 87		LHR=1 или H=1 при недостоверной LHR
Тестовый	Синий	шаг: 87	-	LHS=1 или M=1 при недостоверной LHS
Неизвестный	Серый	шаг: 87		Невозможно сформировать состояния Автомат, Дистанция, Тестовый, либо одновременно формируются 2 и более
Номер шага		шаг: 22 шаг:		Берется из телеграммы VB28 В случае отсутствия VB28 выводятся прочерки
Сигнализация квитированной неисправности	-	шаг: 87	Красный контур	LSR=1
Сигнализация неисправности		шаг: 87	Красный контур, мигает	LSB=1
Принудительный ПУСК или ОСТАНОВ		п.пр.: 22 о.пр.: 22	Надпись «п.пр.:**» или «о.пр.:**»	HBTI=1

Состояние	Цвет элемента	Пример	Цвет фона, динамика, текст	Условия состояния
Выполнение шага		ост.: 22	Надпись	
программы ОСТАНОВ			мигает	LSTB=1
Шаг программы ОСТАНОВ выполнен		ост.: 22	Надпись статична	LSTR=1
Ошибка выполнения шага программы ОСТАНОВ		ост.: 22	Надпись мерцает	LSTF=1
Выполнение шага программы ПУСК		пуск: 22	Надпись мигает	LBTB = 1
Шаг программы ПУСК выполнен		пуск: 22	Надпись статична	LBTR = 1
Ошибка выполнения шага программы ПУСК		пуск: 22	Надпись мерцает	LBTF = 1
Отсутствие информации о программе		шаг: 22	Надпись "шаг: **"	LBTF, LBTR, LBTB, LSTF, LSTR, LSTB $\neq 1$
Отсутствие корректной информации о программе		????: 22	Надпись "????: **"	2 и более из LBTF, LBTR, LBTB, LSTF, LSTR, LSTB равны 1

Вид окна управления для данного объекта приведен на рисунке 81.

Рисунок 81

В окне управления ФГУ находятся следующие области и кнопки:

- цифровой индикатор времени ожидания с единицами измерения (мин или сек);
- цифровой индикатор времени контроля с единицами измерения (мин или сек);
- цифровой индикатор номера текущего шага;
- цифровой индикатор номера следующего шага.

Индикатор наличия ветвления. При наличии ветвления он имеет зеленый цвет. При отсутствии ветвления он темно-серый.

Цифровые индикаторы номеров следующих шагов при ветвлении и выполнения условий для каждой из ветвей (4 индикатора). При выполнении условий фон индикатора становится зелёным, в противном случае фон серый.

Кнопка «СМЕНА ВЕТВИ» используется для циклического выбора одной из 4 ветвей. Ветви переключаются по циклу: $1 -> 2 -> 3 -> 4 -> 1 \dots$

При клике на кнопку «СМЕНА ВЕТВИ», она переходит в нажатое состояние. Клик на любую другую из кнопок управления переводит кнопку «СМЕНА ВЕТВИ» в отжатое состояние. Если при нажатой кнопке «СМЕНА ВЕТВИ» кликнуть на кнопку «ВЫПОЛНИТЬ», то на аппаратуру выбора режима работы проходит команда смены ветви, и кнопка «СМЕНА ВЕТВИ» переходит в отжатое состояние.

Кнопка «АВТО/ДИСТ» – рисунок кнопки отражает три возможных состояния: кнопка недоступна, кнопка отжата, кнопка нажата. Надпись на кнопке меняются в

зависимости от текущего состояния режимов ФГУ. Если ФГУ находится в режиме «Дистанционный» или «Тестовый», то на кнопке выводится надпись «АВТОМАТ». Если ФГУ находится в режиме «Автомат», то на кнопке выводится надпись «ДИСТАНЦИЯ» Если текущее состояние не определено, то на кнопке выводится надпись «ПЕРЕКЛ.». При недоступности кнопки (нет привязки) — кнопка не активная.

При клике на кнопку «АВТО/ДИСТ», она переходит в нажатое состояние. Клик на любую из кнопок управления: «ТЕСТ/ДИСТ.», «ОСТАНОВ», «ПУСК», «ПР. ПУСК», «ПР. ОСТАНОВ» переводит кнопку «АВТО/ДИСТ.» в отжатое состояние. Если кнопка «АВТО/ДИСТ» нажата, и кликнуть на кнопку «ВЫПОЛНИТЬ», на аппаратуру выбора режима работы проходит команда переключения режима, и кнопка «АВТО/ДИСТ» переходит в отжатое состояние.

Кнопка «ТЕСТ/ДИСТ» – рисунок кнопки отражает три возможных состояния: кнопка недоступна, кнопка отжата, кнопка нажата. Надпись и цвет на кнопке меняются в зависимости от текущего состояния режимов ФГУ. Если ФГУ находится в режиме «Дистанционный» или «Автоматический», то на кнопке выводится надпись «ТЕСТОВЫЙ». Если ФГУ находится в режиме «Тестовый», то на кнопке выводится надпись «ДИСТАНЦИЯ» Если текущее состояние не определено, то на кнопке серого цвета выводится надпись «ПЕРЕКЛ.». При недоступности кнопки (нет привязки) кнопка не активная.

При клике на кнопку «ТЕСТ/ДИСТ» она переходит в нажатое состояние. Клик на любую другую из кнопок управления переводит кнопку «ТЕСТ/ДИСТ» в отжатое состояние. Если кнопка «ТЕСТ/ДИСТ» нажата, и кликнуть кнопку «ВЫПОЛНИТЬ», на аппаратуру выбора режима работы проходит команда переключения режима, и кнопка «ТЕСТ/ДИСТ» переходит в отжатое состояние.

Кнопка «ПУСК» – рисунок кнопки отражает три возможных состояния: кнопка недоступна, кнопка отжата, кнопка нажата. При недоступности кнопки (нет привязки) – кнопка не активная. При клике на кнопку «ПУСК», она переходит в нажатое состояние. Клик на любую другую из кнопок управления переводит кнопку «ПУСК» в отжатое положение. Если кнопка «ПУСК» нажата, и кликнуть кнопку «ВЫПОЛНИТЬ», на аппаратуру выбора режима работы проходит команда «Выбор программы ПУСК», и кнопка «ПУСК» переходит в отжатое состояние.

Кнопка «ПР. ПУСК» – рисунок кнопки отражает три возможных состояния: кнопка недоступна, кнопка отжата, кнопка нажата. При недоступности кнопки (нет

привязки) кнопка не активная. При клике на кнопку «ПР. ПУСК», она переходит в нажатое состояние. Клик на любую другую из кнопок управления переводит кнопку «ПР. ПУСК» в отжатое положение. Если при нажатой кнопке «ПР. ПУСК» кликнуть на кнопку «ВЫПОЛНИТЬ», на аппаратуру выбора режима работы проходит команда «проталкивание программы ПУСК», и кнопка «ПР. ПУСК» переходит в отжатое состояние.

Кнопка «ОСТАНОВ» – рисунок кнопки отражает три возможных состояния: кнопка недоступна, кнопка отжата, кнопка нажата. При недоступности кнопки (нет привязки) – кнопка не активная. При клике на кнопку «ОСТАНОВ», она переходит в нажатое состояние. Клик на любую другую из кнопок управления переводит кнопку «ОСТАНОВ» в отжатое состояние. Если при нажатой кнопке «ОСТАНОВ» кликнуть на кнопку «ВЫПОЛНИТЬ», на аппаратуру выбора режима работы проходит команда «выбор программы ОСТАНОВ», и кнопка «ОСТАНОВ» переходит в отжатое состояние.

Кнопка «ПР. ОСТАНОВ» – рисунок кнопки отражает три возможных состояния: кнопка недоступна, кнопка отжата, кнопка нажата. При недоступности кнопки (нет привязки) – кнопка не активная. При клике на кнопку «ПР. ПУСК», она переходит в нажатое состояние. Клик на любую другую из кнопок управления переводит кнопку «ПР. ОСТАНОВ» в отжатое состояние. Если при нажатой кнопке «ПР. ОСТАНОВ» кликнуть на кнопку «ВЫПОЛНИТЬ», на аппаратуру выбора режима работы проходит команда «проталкивание программы ОСТАНОВ», и кнопка «ПР. ОСТАНОВ» переходит в отжатое состояние.

Кнопка «ВЫПОЛНИТЬ» служит для подтверждения подачи команды. При недоступности кнопки (никакая команда не выбрана или оборудование в ремонте) – кнопка не активная. После каждого действия оператора кнопка автоматически возвращается в отжатое состояние.

Кнопка «ПОДРОБНО» используется для вызова расширенного окна управления. Расширенное окно управления ФГУ изображено на рисунке 82.

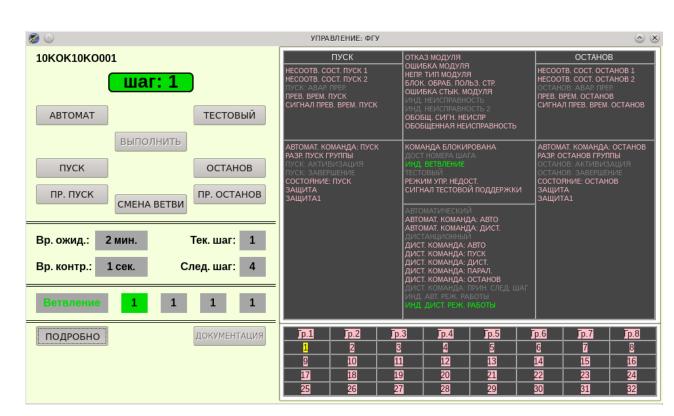


Рисунок 82

В расширенном окне управления $\Phi\Gamma$ У, кроме областей и кнопок из стандартного окна управления, находятся следующие элементы:

- NOBI-протокол (верхний) диагностических сигналов ФГУ. Соответствие между сигналами диагностики из ТПТС и NOBI-протокола приведено в таблице 24;
- NOBI-протокол (нижний) невыполнения условий, заложенных в программу ФГУ.
 Соответствие между сигналами диагностики из ТПТС и NOBI-протокола приведено в таблице 25.

Таблица 24 - NOBI-протокол (верхний) диагностических сигналов ФГУ

Направление	Сигнал в окне управления	Обозначение в ТПТС	Цвет активного сообщения в окне управления
	НЕСООТВ. СОСТ. ПУСК 1	EFAB	красный
	НЕСООТВ. СОСТ. ПУСК 2	EFB	красный
ПУСК	ПУСК: АВАР. ПРЕР.	LBTB	красный
III CK	ЗАЩИТА	SAB	красный
	ЗАЩИТА 1	SAS	красный
	ПРЕВ. ВРЕМ. ПУСК	UEZAB	красный

Направление	Сигнал в окне управления	Обозначение в ТПТС	Цвет активного сообщения в окно управления		
	СИГНАЛ ПРЕВ. ВРЕМ. ПУСК	UEZB	красный		
	АВТОМАТ. КОМАНДА: ПУСК	BABV	зеленый		
THE CLA	РАЗР. ПУСК ГРУППЫ	FPB	зеленый		
ПУСК	ПУСК: АКТИВИЗАЦИЯ	LBTF	зеленый		
	ПУСК: ЗАВЕРШЕНИЕ	LBTR	зеленый		
	СОСТОЯНИЕ: ПУСК	RSB	зеленый		
	ОТКАЗ МОДУЛЯ	BGAU	красный		
	ОШИБКА МОДУЛЯ	BGF	красный		
	НЕПР. ТИП МОДУЛЯ	BGT	красный		
	БЛОК. ОБРАБ. ПОЛЬЗ. СТР.	BSP	красный		
	ОШИБКА СТЫК. МОДУЛЯ	ESF	красный		
	ИНД. НЕИСПРАВНОСТЬ	LSB	красный		
	ИНД. НЕИСПРАВНОСТЬ 2	LSR	красный		
	ОБОБЩ. СИГН. НЕИСПР	M15i	красный		
	ОБОБЩЕННАЯ НЕИСПРАВНОСТЬ	OS	красный		
	КОМАНДА БЛОКИРОВАНА	BBL	красный		
	ДОСТ НОМЕРА ШАГА	LHS	зеленый		
	инд. ветвление	LVR	зеленый		
OFWIE	ТЕСТОВЫЙ	M	зеленый		
ОБЩИЕ	РЕЖИМ УПР. НЕДОСТ.	NV	красный		
СИГНАЛЫ	СИГНАЛ ТЕСТОВОЙ ПОДДЕРЖКИ	TH	зеленый		
	АВТОМАТИЧЕСКИЙ	A	зеленый		
	АВТОМАТ. КОМАНДА: АВТО	BAAV	зеленый		
	АВТОМАТ. КОМАНДА: ДИСТ.	BAHV	зеленый		
	ДИСТАНЦИОННЫЙ	Н	зеленый		
	ДИСТ. КОМАНДА: АВТО	HBA	зеленый		
	ДИСТ. КОМАНДА: ПУСК	HBBT	зеленый		
	ДИСТ. КОМАНДА: ДИСТ.	НВН	зеленый		
	ДИСТ. КОМАНДА: ПАРАЛ.	HBM	зеленый		
	ДИСТ. КОМАНДА: ОСТАНОВ	HBST	зеленый		
	ДИСТ. КОМАНДА: ПРИН. СЛЕД. ШАГ	HBTI	зеленый		
	ИНД. АВТ. РЕЖ. РАБОТЫ	LAR	зеленый		
	ИНД. ДИСТ. РЕЖ. РАБОТЫ	LHR	зеленый		
ОСТАНОВ	HECOOTB. COCT. OCTAHOB 1	EFAS	красный		
	HECOOTB. COCT. OCTAHOB 2	EFS	красный		
	ОСТАНОВ: АВАР. ПРЕР.	LSTB	красный		

Направление	Сигнал в окне управления	Обозначение в ТПТС	Цвет активного сообщения в окне управления	
	ЗАЩИТА	SAB	красный	
	ЗАЩИТА1 SAS		красный	
	ПРЕВ. ВРЕМ. ОСТАНОВ UEZAS		красный	
ОСТАНОВ	СИГНАЛ ПРЕВ. ВРЕМ. ОСТАНОВ	UEZS	красный	
	АВТОМАТ. КОМАНДА: ОСТАНОВ	BASV	зеленый	
	РАЗР. ОСТАНОВ ГРУППЫ	FPS	зеленый	
	ОСТАНОВ: АКТИВИЗАЦИЯ	LSTF	зеленый	
	ОСТАНОВ: ЗАВЕРШЕНИЕ	LSTR	зеленый	
	СОСТОЯНИЕ: ОСТАНОВ	RSS	зеленый	

Таблица 25 - NOBI-протокол (нижний) диагностических сигналов ФГУ

Сигнал в окне управления	Обозначение в ТПТС	Цвет активного сообщения в окне управления		
Гр. 1	LBD1R	желтый		
Гр. 2	LBD2R	желтый		
Гр. 3	LBD3R	желтый		
Гр. 4	LBD4R	желтый		
Гр. 5	LBD5R	желтый		
Гр. 6	LBD6R	желтый		
Гр. 7	LBD7R	желтый		
Гр. 8	LBD8R	желтый		
1	LBD1Rs	желтый		
2	LBD2Rs	желтый		
3	LBD3Rs	желтый		
4	LBD4Rs	желтый		
5	LBD5Rs	желтый		
6	LBD6Rs	желтый		
7	LBD7Rs	желтый		
8	LBD8Rs	желтый		
9	LBD9Rs	желтый		
10	LBD10Rs	желтый		
11	LBD11Rs	желтый		
12	LBD12Rs	желтый		
13	LBD13Rs	желтый		
14	LBD14Rs	желтый		
15	LBD15Rs	желтый		
16	LBD16Rs	желтый		
17	LBD17Rs	желтый		
18	LBD18Rs	желтый		
19	LBD19Rs	желтый		
20	LBD20Rs	желтый		
21	LBD21Rs	желтый		

Сигнал в окне управления	Обозначение в ТПТС	Цвет активного сообщения в окне управления
22	LBD22Rs	желтый
23	LBD23Rs	желтый
24	LBD24Rs	желтый
25	LBD25Rs	желтый
26	LBD26Rs	желтый
27	LBD27Rs	желтый
28	LBD28Rs	желтый
29	LBD29Rs	желтый
30	LBD30Rs	желтый
31	LBD31Rs	желтый
32	LBD32Rs	желтый

8.11 Изображение резервуаров

Резервуары отображаются в форме замкнутых цветных областей произвольной формы. Пример резервуара приведен на рисунке 83.

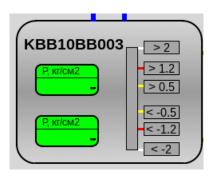


Рисунок 83

8.12 Изображение трубопроводов и потоков в трубопроводах

Трубопроводы изображаются в виде цветных горизонтальных и вертикальных линий.

Цвет линий определяется в зависимости от среды:

- вода зелёный;
- пар красный;
- раствор борной кислоты тёмно зелёный;
- воздух синий;
- газы жёлтый;

- растворы (щелочные, кислотные) фиолетовый;
- прочие вещества серый;
- конденсаты голубой.

Направление потоков в трубопроводах обозначается стрелками, примеры которых приведены на рисунке 84.

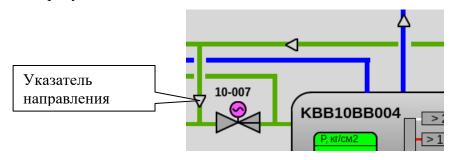


Рисунок 84

8.13 Тренды

Тренды – графическое представления информации о технологическом процессе пользователю (рисунок 85).

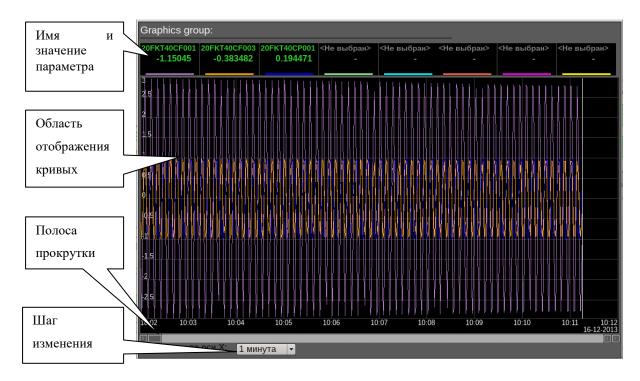


Рисунок 85

Возможности трендов:

- в каждом тренде может быть отображено до 8 переменных любого типа;
- отображение в режиме реального времени и представление выборки из архива (до 24 часов);
- изменение конфигурации тренда;
- масштабирование окна по оси Х и по оси Y;
- полосы прокрутки по осям X и Y;
- возможность конфигурирования каждой кривой тренда;
- в каждом проекте может быть 2 окна тренда.

8.13.1 Настройка изображения кривых тренда

Выбрать параметр для просмотра в окне тренда можно путем выбора этого параметра на мнемосхеме или задать в окне тренда имя параметра вручную.

Для выбора параметра на мнемосхеме, необходимо в контекстном меню параметра (вызывается нажатием на правую кнопку «мыши») выбрать пункт «График» (рисунок 86).

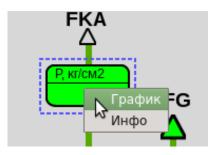


Рисунок 86

Выбранный параметр появится в окне тренда (рисунок 87).

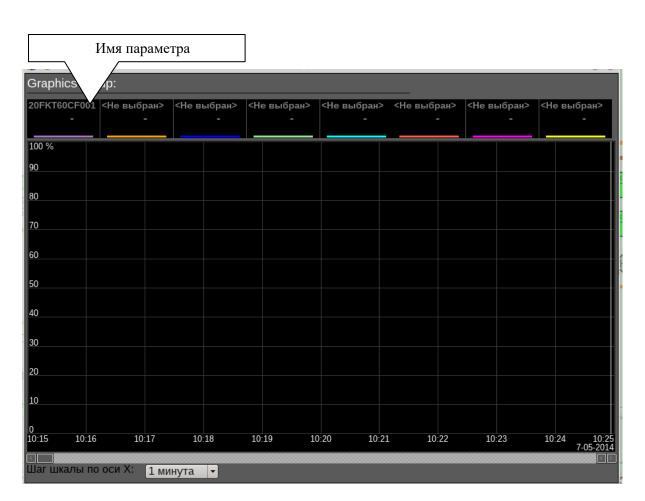


Рисунок 87

Для задания параметра в окне тренда вручную, необходимо выбрать пункт «Replays» контекстного меню, нажав правую кнопку «мыши» на поле выбора параметра в окне тренда (рисунок 88).

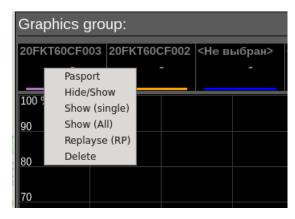


Рисунок 88

В появившемся окне ввести имя параметра в поле ввода (рисунок 89), нажать кнопку подтверждения ввода и кнопку «ОК». Заданный параметр появится в окне тренда.

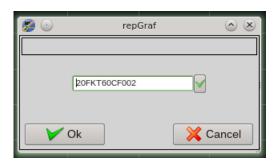


Рисунок 89

8.13.2 Тренд в режиме реального времени

В режиме реального времени новые значения для каждой кривой вычерчиваются, начиная с правой стороны диаграммы (рисунок 85). Более старые данные прокручиваются через диаграмму, в конечном счете, исчезая с левой стороны.

Частота, с которой диаграмма тренда обновляется, зависит от конфигурации тренда и частоты изменения данных.

Диаграмма тренда всегда обновляется при изменении значения переменной тренда.

Диаграмма обновляется также с фоновой частотой, определяемой конфигурацией окна тренда. Этот параметр «Шаг шкалы по оси Х:» задается в нижней части окна тренда, Значение выбирается из предложенного списка (рисунок 90). Например, если бы фоновая регенерация была установлена в значение 5, диаграмма обновлялась бы каждые 5 секунд, даже если ни одна из переменных не изменялась.

Рисунок 90

Окно тренда записывает значения реального времени в своем буфере, давая пользователю ограниченную возможность просмотреть данные назад во времени. Буфер продолжает записывать данные во время отображения тренда, отвергая самые старые значения при заполнении. Заполнение буфера изменяет размер ползунка на полосе прокрутки, отражая количество сохраненных данных по отношению к периоду диаграммы. Например, если буфер содержит 10 минут данных, а диаграмма - 2 минуты, ползунок будет приблизительно одной пятой длины полосы прокрутки.

8.13.3 Полоса прокрутки окна тренда

Полоса прокрутки (рисунок 91) используется для выбора данных в буфере окна тренда и отображения этих данных на диаграмме.

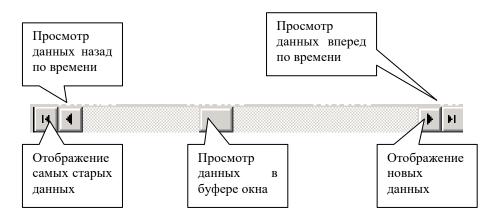


Рисунок 91

Перечень принятых сокращений

АСУ ТП автоматизированная система управления технологическими

процессами

БД база данных

ВУ верхний уровень

ИМ интерфейсный модуль

КСА комплекс средств автоматизации

ОС операционная система

ПА процессор автоматизации

ПО программное обеспечение

ПП программная платформа

ПТК программно-технический комплекс

СВВ станция ввода-вывода

СКУ система контроля и управления

СП связь с процессором

ТЭК топливно-энергетический комплекс

		Лист Номера листов (страниц)			Всего		Входящий		
Изм.	Изменен- ных	Заменен-	Новых	Аннулиро- ванных	листов (страниц) в докум.	№ документа	№ сопроводи тельного докум. и дата	Подп.	Дата